Store-operated Ca entry is a mechanism controlled by the filling state of the intracellular Ca stores, predominantly the endoplasmic reticulum (ER), where ER-resident proteins STIM1 and STIM2 orchestrate the activation of Orai channels in the plasma membrane, and Orai1 playing a predominant role. Two forms of Orai1, Orai1α and Orai1β, have been identified, which arises the question whether they are equally regulated by STIM proteins. We demonstrate that STIM1 preferentially activates Orai1α over STIM2, yet both STIM proteins similarly activate Orai1β.
View Article and Find Full Text PDFExtended synaptotagmins (E-Syts) are endoplasmic reticulum (ER)-associated proteins that facilitate the tethering of the ER to the plasma membrane (PM), participating in lipid transfer between the membranes and supporting the Orai1-STIM1 interaction at ER-PM junctions. Orai1 and STIM1 are the core proteins of store-operated Ca entry (SOCE), a major mechanism for Ca influx that regulates a variety of cellular functions. Aberrant modulation of SOCE in cells from different types of cancer has been reported to underlie the development of several tumoral features.
View Article and Find Full Text PDFOrai1 is the pore-forming subunit of the Ca-release activated Ca channels that mediate store-operated Ca entry (SOCE) in excitable and non-excitable cells. Two Orai1 forms have been identified in mammalian cells, the full-length variant Orai1α, and the short form Orai1β, lacking the N-terminal 63 amino acids. Stem cells were isolated from non-tumoral breast epithelial cells of the MCF10A cell line, and the most representative ER+ , HER2 or triple negative breast cancer cell lines MCF7, SKBR3 and MDA-MB-231, respectively.
View Article and Find Full Text PDF