Introduction: Exposure to elevated temperatures and relative humidity expedites the seed aging process, finally leading to seed viability loss. In this context, certain proteins play a pivotal role in safeguarding the longevity of seeds. However, the seedproteomic response to loss viability in Salvia hispanica L.
View Article and Find Full Text PDFThe starch inclusion complexation of sensitive compounds requires the use of conditions that minimize their degradation. This research work is aimed at investigating the effect of an alkaline complexation method employing mild reaction conditions on the physicochemical properties and accelerated stability of inclusion complexes of high amylose corn starch with omega-3 and omega-6 fatty acids. Hydrolyzed chia seed oil, rich in α-linolenic and linoleic fatty acids, was used as guest material and was incorporated at two ratios (10 and 20 % w/w hydrolysate/starch).
View Article and Find Full Text PDFBackground: Omega-3 fatty acids are known for their various health benefits. Chia is the richest vegetable source of omega-3 fatty acids. However, its oil is highly susceptible to oxidative deterioration and should be protected for incorporation into food matrices.
View Article and Find Full Text PDFLipids are relevant during the seed aging process, for which it is pertinent to choose an extraction method that does not alter their nature. Thus, three methods were applied to extract lipids from chia seeds: one used as reference (Soxhlet) and two at room temperature using hexane/ethanol (COBio) and hexane/isopropanol (COHar). The fatty acid composition and the tocopherol content of the oils were analyzed.
View Article and Find Full Text PDFBackground: Chia oil possesses a very high content of polyunsaturated fatty acids, mainly α-linolenic acid. This characteristic makes this oil possess beneficial properties to health but gives it a high susceptibility to the oxidation process. Microencapsulation and the addition of natural antioxidants are alternatives to protect chia oil against oxidative deterioration.
View Article and Find Full Text PDFThe present work investigated the physicochemical properties of O/W emulsions containing functional ingredients (oil with high ω-3 fatty acid content, protein and/or soluble fiber) from chia seeds. The effect of different protein-carbohydrate combinations (sodium caseinate and lactose, sodium caseinate and maltodextrin, chia protein-rich fraction and maltodextrin) and the presence of chia mucilage (0 and 0.2 % wt/wt) in the aqueous phase of chia O/W emulsions was studied as a function of droplet size distribution, Sauter mean diameter, ζ-potential, rheological properties and backscattering profiles.
View Article and Find Full Text PDFBackground: The micromorphology and anatomy of nutlets, myxocarpy (mucilage exudation) and mucilage structure of Argentinean chia were described using scanning electron microscopy (SEM). The proximal composition of nutlets and mucilage was also studied.
Results: Chia nutlets are made up of a true seed and a pericarp enclosing the seed; they are small, glabrous, elliptic and apically rounded.