Publications by authors named "Vanesa Cuenca-Gotor"

The effect of pressure on the structural, vibrational, and optical properties of lead thiogallate, PbGaS, crystallizing under room conditions in the orthorhombic EuGaS-type structure (space group ), is investigated. The results from X-ray diffraction, Raman scattering, and optical-absorption measurements at a high pressure beyond 20 GPa are reported and compared not only to calculations, but also to the related compounds α'-GaS, CdGaS, and HgGaS. Evidence of a partially reversible pressure-induced decomposition of PbGaS into a mixture of PbGaS and GaS above 15 GPa is reported.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the structural and vibrational changes in β-InS under compression, revealing two reversible phase transitions up to 20 GPa.
  • The first transition occurs above 5.0 GPa to a cubic defect spinel structure (α-InS), followed by a second transition above 10.5 GPa to a newly identified defect α-NaFeO-type structure (ϕ-InS).
  • Findings indicate that the α-InS phase can be achieved not just via high temperature or compositional changes, but also under high pressure, highlighting similarities in behavior between InS and other related compound classes.
View Article and Find Full Text PDF

High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSbTe into the high-pressure phases of its parent binary compounds (α-SbTe and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials.

View Article and Find Full Text PDF

We report a joint experimental and theoretical investigation of the high pressure structural and vibrational properties of terbium sesquioxide (TbO). Powder X-ray diffraction and Raman scattering measurements show that cubic 3̅ (C-type) TbO undergoes two phase transitions up to 25 GPa. We observe a first irreversible reconstructive transition to the monoclinic 2/ (B-type) phase at ∼7 GPa and a subsequent reversible displacive transition from the monoclinic to the trigonal 3̅1 (A-type) phase at ∼1 GPa.

View Article and Find Full Text PDF

We report a joint experimental and theoretical study of the structural, vibrational, and electronic properties of layered monoclinic arsenic sulfide crystals (α-AsS), aka mineral orpiment, under compression. X-ray diffraction and Raman scattering measurements performed on orpiment samples at high pressure and combined with ab initio calculations have allowed us to determine the equation of state and the tentative assignment of the symmetry of many Raman-active modes of orpiment. From our results, we conclude that no first-order phase transition occurs up to 25 GPa at room temperature; however, compression leads to an isostructural phase transition above 20 GPa.

View Article and Find Full Text PDF

The high-pressure behavior of technologically important visible-light photocatalytic semiconductor InNbO, adopting a monoclinic wolframite-type structure at ambient conditions, was investigated using synchrotron-based X-ray diffraction, Raman spectroscopic measurements, and first-principles calculations. The experimental results indicate the occurrence of a pressure-induced isostructural phase transition in the studied compound beyond 10.8 GPa.

View Article and Find Full Text PDF