Publications by authors named "Vane C"

Microplastics in sediment cores from urban tidal tributaries, Barking and Bow Creek-London and salt marshes Swanscombe, Kent, and Rainham, Essex, Thames estuary (UK), were quantified by density separation and ATR-FTIR spectroscopy. All eight tributary cores were dominated by low-density microplastics, polypropylene, polyethylene, and polystyrene with the greatest abundance (mean 360.0 ± 12.

View Article and Find Full Text PDF

Microplastics at 10 sites along a 77 km transect of the river Thames estuary (UK) and 5 sites along 29 km of the Medway estuary were separated from sediment and analysed by ATR-FTIR spectroscopy. Microplastics were observed at all sites. Highest Thames concentrations were in urban London between Chelsea and West Thurrock (average 170.

View Article and Find Full Text PDF

Nairobi River sediments from locations adjacent to the Kawangware and Kiambio slums were analyzed via Fourier transform ion cyclotron resonance mass spectrometry with atmospheric pressure photoionization (APPI-FT-ICR-MS). The data from these ultrahigh resolution, untargeted measurements provided new insights into the impacts of local anthropogenic activity, which included likely benzo- and dibenzothiophene pollution with a suspected petrogenic origin, and prominent surfactant-like compositions. Other features in the data included highly abundant tetra-oxygenated compounds, and oxygenated nitrogen compounds with sphingolipid interpretations.

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and heteroatom-containing analogues, constitute an important environmental contaminant class. For decades, limited numbers of priority PAHs have been routinely targeted in pollution investigations, however, there is growing awareness for the potential occurrence of thousands of PACs in the environment. In this study, untargeted Fourier transform ion cyclotron resonance mass spectrometry was used for the molecular characterisation of PACs in a sediment core from Chiswick Ait, in the River Thames, London, UK.

View Article and Find Full Text PDF

An enhanced in vitro human dermal bioavailability method was developed to measure the release of twenty parent and seven alkylated high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs) from contaminated soils collected from five former manufactured Gas Plants (MGP) in England. GC-MS/MS was used to quantify HMW PAHs in soil, Strat-M artificial membrane representing skin, and synthetic receptor solution (RS) representing systemic circulation at 1-h, 10-h, and 24-h timesteps. Fluoranthene and pyrene exhibited the highest fluxes from soils to membrane (ranging from 9.

View Article and Find Full Text PDF

Soils sampled from 10 former manufactured gas plants (MGP) in the UK were investigated using gas chromatography mass spectrometry (GC-MS/MS) and Rock-Eval (6) Pyrolysis (RE). RE is a screening tool used to characterise bulk organic matter in soils via the release of carbon compounds during pyrolysis and oxidation. Both the distributions and concentrations of 30 parent and 21 alkylated polycyclic aromatic hydrocarbons (PAHs) and the parameters of RE were analysed to establish relationships between soils and the MGP processes history.

View Article and Find Full Text PDF

As a non-invasive imaging technique, this study explores the application of Computed Tomography (CT) in microplastics research, assessing its potential to distinguish different types and sizes of microplastics (polypropylene, polyethylene terephthalate, polyethylene, and polyvinyl chloride) from homogenised river-estuarine sediment. When examined in layers within artificial cores, all microplastic types could be observed by CT imagery, with good contrast in X-ray attenuation (based on image gray level intensity) against background sediments. Large microplastics (4 mm diameter) were also detectable when distributed randomly amongst the sediment.

View Article and Find Full Text PDF

Tropical peatlands are important carbon stores that are vulnerable to drainage and conversion to agriculture. Protection and restoration of peatlands are increasingly recognised as key nature based solutions that can be implemented as part of climate change mitigation. Identification of peatland areas that are important for protection and restauration with regards to the state of their carbon stocks, are therefore vital for policy makers.

View Article and Find Full Text PDF
Article Synopsis
  • The forested swamps of the central Congo Basin contain about 30 billion metric tonnes of carbon in peat, but their vulnerability is not well understood.
  • Peat accumulation in the region began over 17,500 years ago, with significant decomposition occurring between 7,500 and 2,000 years ago due to a drying climate that lowered the water table.
  • Following 2,000 years ago, hydrologic conditions stabilized, leading to a resumption of peat accumulation; this suggests that the carbon stocks may be close to a threshold where climate change could trigger further losses.
View Article and Find Full Text PDF

Sedimentary organic pollution in the urban reaches of the Thames estuary is changing from fossil fuel hydrocarbons to emerging synthetic chemicals. De-industrialisation of London was assessed in three cores from Chiswick (Ait/Eyot) mud island using pharmaceuticals, faecal sterols, hydrocarbons (TPH, PAH), Black Carbon (BC) and organotins (TBT). These ranked in the order; BC 7590-30219 mg/kg, mean 16,000 mg/kg > TPH 770-4301, mean 1316 mg/kg > PAH 6.

View Article and Find Full Text PDF

Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption.

View Article and Find Full Text PDF

In vitro high molecular weight polycyclic aromatic hydrocarbons (HMW-PAH) soil-sebum partition coefficients (K) were measured for twelve soils collected from former UK gasworks. Concentrations of ∑16 USEPA PAH in the soils ranged from 51 to 1440 mg/kg. Time series extractions (0.

View Article and Find Full Text PDF

For nearly 200 years, the only natural source of the alcohol ambrein has been coproliths produced in about 1% of sperm whales and in related jetsam. However, the finding of ambrein in adipocere/faeces of human corpses, led us to hypothesise that ambrein might occur in the faeces of other mammals. Herein, we used a recently developed gas chromatography-mass spectrometry method, with suitable derivatisation of the hindered hydroxy group of ambrein, to screen a number of extracts of mammalian faeces.

View Article and Find Full Text PDF
Article Synopsis
  • Sediment cores from Staten Island’s salt marsh reveal multiple historical oil spills that negatively affect ecological health.
  • A bioassay indicated moderate to high levels of toxicity, with spikes in total petroleum hydrocarbons (TPH) and PAH coinciding with known oil spills.
  • High levels of specific metals were found in the sediment, exceeding safety guidelines, which could harm sensitive organisms; thus, careful management of the sediment is advised to prevent the release of harmful contaminants.
View Article and Find Full Text PDF

River islands (Ait or Eyot) within the inner tidal Thames serve as unique recorders of current and historical estuarine chemical pollution. Sediment cores from Chiswick Ait were assessed for contamination using Microtox® solid phase bioassay, stable isotopes (δC, δN), heavy metals and polychlorinated biphenyls (PCBs). Microtox® classified these sediments as non-toxic to moderately toxic and bulk isotopes identified a change in organic input.

View Article and Find Full Text PDF

Exploration for shale gas occurs in onshore basins, with two approaches used to predict the maximum gas in place (GIP) in the absence of production data. The first estimates adsorbed plus free gas held within pore space, and the second measures gas yields from laboratory pyrolysis experiments on core samples. Here we show the use of sequential high-pressure water pyrolysis (HPWP) to replicate petroleum generation and expulsion in uplifted onshore basins.

View Article and Find Full Text PDF

Tropical peatland ecosystems are a significant component of the global carbon cycle and feature a range of distinct vegetation types, but the extent of links between contrasting plant species, peat biogeochemistry and greenhouse gas fluxes remains unclear. Here we assessed how vegetation affects small scale variation of tropical peatland carbon dynamics by quantifying in situ greenhouse gas emissions over 1 month using the closed chamber technique, and peat organic matter properties using Rock-Eval 6 pyrolysis within the rooting zones of canopy palms and broadleaved evergreen trees. Mean methane fluxes ranged from 0.

View Article and Find Full Text PDF

Staten Island is located in one of the most densely populated regions of the US: the New York/New Jersey Estuary. Marine and industrial oil spills are commonplace in the area, causing the waterways and adjacent marshes to become polluted with a range of petroleum-related contaminants. Using Rock-Eval pyrolysis, the hydrocarbon impact on a salt marsh was assessed at regular intervals down to 90 cm, with several key sampling depths of interest identified for further analysis.

View Article and Find Full Text PDF

Surface sediment samples (n = 45) were collected along a 110 km transect of the river Thames in October 2011, starting from Teddington Lock out through the industrial area of London to the southern North Sea. Several legacy and novel brominated flame retardants (NBFRs) were analysed, including 13 polybrominated diphenyl ethers (PBDEs) (congeners 17, 28, 47, 99, 100, 153, 154, 183, 196, 197, 206, 207 and 209), hexabromocyclododecane (HBCDDs), tetrabromobisphenol A (TBBPA), hexabromobenzene (HBB), 2,4,6-tribromophenol (TBP), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB or TBB), bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP or TBPH), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB), anti/syn-dechlorane plus (a/s-DP), 2,2',4,4',5,5'-hexabromobiphenyl (BB153) and α-,β-1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (α-,β-DBE-DBCH or TBECH). A novel analysis method based on liquid chromatographic separation, followed by high resolution accurate mass detection using the Orbitrap platform was used for quantification.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds consisting of two or more fused aromatic rings and are probably one of the most studied groups of organic chemicals in environmental research. PAHs originate mainly from anthropogenic processes, particularly from incomplete combustion of organic fuels. PAHs are distributed widely in particulate matter.

View Article and Find Full Text PDF

Estuarine sediments can be a source of Phosphorus (P) to coastal waters, contributing to nutrient budgets and geochemical cycles. In this work, the concentration and speciation of P in 47 cores were examined from the inter-tidal mud flats of the tidal river Thames (~120km). Results of P concentration and speciation were combined with published data relating to known sediment dynamics and water chemistry (salinity) within the estuary to produce a conceptual model of sediment-P behaviour.

View Article and Find Full Text PDF

Surface sediment concentrations of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB), total petroleum hydrocarbons (TPH) and mercury, were compared from two areas with contrasting land use history, the industrial Delaware Estuary and the rural Delmarva Peninsula (USA). TPH in the Delaware (38-616mg/kg) and saturate/aromatic fractions suggested petroleum/industrial sources compared to biogenic sources in the Delmarva coastal control (<34-159mg/kg). Within the Delaware the ∑PAH18 ranged from 3749 to 22,324μg/kg with isomeric ratios indicative of petroleum combustion source/s, conversely, those in the Delmarva (5-2139μg/kg) also yielded relatively higher perylene that were consistent with natural background levels derived from vegetation/coal combustion source/s.

View Article and Find Full Text PDF

Rationale: The carbon isotope (δ C value) composition of fossil plant material is routinely used as a proxy of past climate and environment change. However, palaeoclimate interpretation requires assumptions about the stability of δ C values in plant material during its decomposition and incorporation into sediments. Previous work on modern angiosperm species shows δ C changes of several per mille during simulated decomposition experiments.

View Article and Find Full Text PDF