The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet.
View Article and Find Full Text PDFEarly embryogenesis is driven by transcription factors (TFs) that first activate the zygotic genome and then specify the lineages constituting the blastocyst. Although the TFs specifying the blastocyst's lineages are well characterized, those playing earlier roles remain poorly defined. Using mouse models of the TF , we show that embryos arrest at the early morula stage and exhibit altered lineage specification, frequent mitotic failure, and substantial chromosome segregation defects.
View Article and Find Full Text PDFMouse embryonic stem cells have an inherent propensity to explore gene regulatory states associated with either self-renewal or differentiation. This property depends on ERK, which downregulates pluripotency genes such as Nanog. Here, we aimed at identifying repressive histone modifications that would mark Nanog for inactivation in response to ERK activity.
View Article and Find Full Text PDFHistone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown.
View Article and Find Full Text PDFThe mouse preimplantation embryo is an excellent system for studying how mammalian cells organize dynamically into increasingly complex structures. Accessible to experimental and genetic manipulations, its normal or perturbed development can be scrutinized ex vivo by real-time imaging from fertilization to late blastocyst stage. High-resolution imaging of multiple embryos at the same time can be compromised by embryos displacement during imaging.
View Article and Find Full Text PDFStable genomic integration of exogenous transgenes is essential in neurodevelopmental and stem cell studies. Despite tools driving increasingly efficient genomic insertion with DNA vectors, transgenesis remains fundamentally hindered by the impossibility of distinguishing integrated from episomal transgenes. Here, we introduce an integration-coupled On genetic switch, iOn, which triggers gene expression upon incorporation into the host genome through transposition, thus enabling rapid and accurate identification of integration events following transfection with naked plasmids.
View Article and Find Full Text PDFRibosome biogenesis inhibition causes cell cycle arrest and apoptosis through the activation of tumor suppressor-dependent surveillance pathways. These responses are exacerbated in cancer cells, suggesting that targeting ribosome synthesis may be beneficial to patients. Here, we characterize the effect of the loss-of-function of Notchless (Nle), an essential actor of ribosome biogenesis, on the intestinal epithelium undergoing tumor initiation due to acute Apc loss-of-function.
View Article and Find Full Text PDFThe access of Transcription Factors (TFs) to their cognate DNA binding motifs requires a precise control over nucleosome positioning. This is especially important following DNA replication and during mitosis, both resulting in profound changes in nucleosome organization over TF binding regions. Using mouse Embryonic Stem (ES) cells, we show that the TF CTCF displaces nucleosomes from its binding site and locally organizes large and phased nucleosomal arrays, not only in interphase steady-state but also immediately after replication and during mitosis.
View Article and Find Full Text PDFReceptor tyrosine kinase signaling pathways are key regulators for the formation of the primitive endoderm (PrE) and the epiblast (Epi) from the inner cell mass (ICM) of the mouse preimplantation embryo. Among them, FGF signaling is critical for PrE cell specification, whereas PDGF signaling is critical for the survival of committed PrE cells. Here, we investigated possible functional redundancies among FGF, PDGF, and KIT signaling and showed that only PDGF signaling is involved in PrE cell survival.
View Article and Find Full Text PDFThe contribution of basal cellular processes to the regulation of tissue homeostasis has just started to be appreciated. However, our knowledge of the modulation of ribosome biogenesis activity in situ within specific lineages remains very limited. This is largely due to the lack of assays that enable quantitation of ribosome biogenesis in small numbers of cells in vivo.
View Article and Find Full Text PDFIn mouse, although four Argonaute (AGO) proteins with partly overlapping functions in small-RNA pathways exist, only Ago2 deficiency causes embryonic lethality. To investigate the role of AGO2 during mouse early development, we generated Ago2-deficient mouse embryonic stem cells (mESCs) and performed a detailed characterization of their differentiation potential. Ago2 disruption caused a global reduction of microRNAs, which resulted in the misregulation of only a limited number of transcripts.
View Article and Find Full Text PDFInner cell Mass (ICM) specification into epiblast (Epi) and primitive endoderm (PrE) is an asynchronous and progressive process taking place between E3.0 to E3.75 under the control of the Fibroblast Growth Factor (FGF)/Extracellular signal-Regulated Kinase (ERK) signaling pathway.
View Article and Find Full Text PDFMicroinjection of the CRISPR/Cas9 system in zygotes is an efficient and comparatively fast method to generate genetically modified mice. So far, only few knock-in mice have been generated using this approach, and because no systematic study has been performed, parameters controlling the efficacy of CRISPR/Cas9-mediated targeted insertion are not fully established. Here, we evaluated the effect of several parameters on knock-in efficiency changing only one variable at a time.
View Article and Find Full Text PDFPluripotent mouse embryonic stem cells maintain their identity throughout virtually infinite cell divisions. This phenomenon, referred to as self-renewal, depends on a network of sequence-specific transcription factors (TFs) and requires daughter cells to accurately reproduce the gene expression pattern of the mother. However, dramatic chromosomal changes take place in mitosis, generally leading to the eviction of TFs from chromatin.
View Article and Find Full Text PDFNOTCH signalling is an evolutionarily conserved pathway involved in intercellular communication essential for cell fate choices during development. Although dispensable for early aspects of mouse development, canonical RBPJ-dependent NOTCH signalling has been shown to influence lineage commitment during embryonic stem cell (ESC) differentiation. NOTCH activation in ESCs promotes the acquisition of a neural fate, whereas its suppression favours their differentiation into cardiomyocytes.
View Article and Find Full Text PDFRibosome biogenesis is an essential cellular process. Its impairment is associated with developmental defects and increased risk of cancer. The in vivo cellular responses to defective ribosome biogenesis and the underlying molecular mechanisms are still incompletely understood.
View Article and Find Full Text PDFAberrant loss of oocytes following cancer treatments or genetic mutations leads to premature ovarian insufficiency (POI) associated with endocrine-related disorders in 1% of women. Therefore, understanding the mechanisms governing oocyte death is crucial for the preservation of female fertility. Here, we report the striking reproductive features of a novel mouse model of POI obtained through oocyte-specific inactivation (ocKO) of Omcg1/Zfp830 encoding a nuclear zinc finger protein involved in pre-mRNA processing.
View Article and Find Full Text PDFMaintenance of cell survival is essential for proper embryonic development. In the mouse, Notchless homolog 1 (Drosophila) (Nle1) is instrumental for survival of cells of the inner cell mass upon implantation. Here, we analyze the function of Nle1 after implantation using the Meox2(tm1(cre)Sor) mouse that expresses the Cre recombinase specifically in the epiblast at E5.
View Article and Find Full Text PDFBlood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in HSCs.
View Article and Find Full Text PDFRecent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair.
View Article and Find Full Text PDFTargeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment.
View Article and Find Full Text PDFOver the last years, the microRNA (miRNA) pathway has emerged as a key component of the regulatory network of pluripotency. Although clearly distinct states of pluripotency have been described in vivo and ex vivo, differences in miRNA expression profiles associated with the developmental modulation of pluripotency have not been extensively studied so far. Here, we performed deep sequencing to profile miRNA expression in naive (embryonic stem cell [ESC]) and primed (epiblast stem cell [EpiSC]) pluripotent stem cells derived from mouse embryos of identical genetic background.
View Article and Find Full Text PDFDuring S phase, the replisome has to overcome many physical obstacles that can cause replication fork stalling and compromise genome integrity. Transcription is an important source of replicative stress and consequently, maintenance of genome integrity requires the protection of chromosomes from the deleterious effects arising from the interaction between nascent RNAs and template DNA, leading to stable DNA-RNA hybrids (R-loop) formation. We previously reported the essential role of Omcg1 (Ovum Mutant Candidate Gene) for cell cycle progression during early embryonic development.
View Article and Find Full Text PDFThe Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites.
View Article and Find Full Text PDFNotch signaling is an evolutionarily conserved pathway involved in intercellular communication and is essential for proper cell fate choices. Numerous genes participate in the modulation of the Notch signaling pathway activity. Among them, Notchless (Nle) is a direct regulator of the Notch activity identified in Drosophila melanogaster.
View Article and Find Full Text PDF