Publications by authors named "Vandooren J"

Proteases are key effectors in macrophage function during the initiation and resolution of inflammation. Recent studies have shown that some proteases, traditionally considered extracellular, also exhibit enzymatic and non-enzymatic functions within the cell. This study explores the differential protease landscapes of macrophages based on their phenotype.

View Article and Find Full Text PDF

In this multi-parameter study, the effect of diverse factors related to adhesive application on the activation of host-derived gelatinases was investigated by gelatin zymography, in-situ zymography, fluorogenic DQ-gelatin assay and micro-tensile bond-strength (μTBS) testing. Gelatin zymography disclosed the presence of gelatinases in phosphoric acid-etched dentin powder, while two gold-standard adhesives generated no measurable MMP activation. In-situ zymography revealed that the interfacial gelatinolytic activity from specimens treated with the two adhesives appeared similar as that of the EDTA negative control, indicating no detectable gelatinases were activated upon adhesive treatment.

View Article and Find Full Text PDF

SDF-1/CXCL12 is a unique chemotactic factor with multiple functions on various types of precursor cells, all carrying the cognate receptor CXCR4. Whereas individual biological functions of SDF-1/CXCL12 have been well documented, practical applications in medicine are insufficiently studied. This is explained by the complex multifunctional biology of SDF-1 with systemic and local effects, critical dependence of SDF-1 activity on aminoterminal proteolytic processing and limited knowledge of applicable modulators of its activity.

View Article and Find Full Text PDF

Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix.

View Article and Find Full Text PDF

Introduction: Wound healing is a complex process to restore homeostasis after injury and insufficient skin wound healing is a considerable problem in medicine. Whereas many attempts of regenerative medicine have been made for wound healing with growth factors and cell therapies, simple pharmacological and immunological studies are lagging behind. We investigated how fibrin hydrogels modulate immune cells and molecules in skin wound healing in mice.

View Article and Find Full Text PDF

Purpose: To verify the antibacterial and immunomodulatory effects of the amylose derivative - chlorite-oxidized oxyamylose (COAM) - in a skin wound setting.

Methods: In vitro antibacterial effects of COAM against opportunistic bacterial pathogens common to skin wounds, including and methicillin-resistant (MRSA), were determined by cultivation methods. The effects of COAM on myeloid cell infiltration into full thickness skin wounds were investigated in wild-type and in transgenic CXCR1-GFP mice.

View Article and Find Full Text PDF

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology.

View Article and Find Full Text PDF

Alpha-2-macroglobulin is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor. By presenting itself as an optimal substrate for endopeptidases of all catalytic types, alpha-2-macroglobulin lures active proteases into its molecular cage and subsequently 'flags' their complex for elimination. In addition to its role as a regulator of extracellular proteolysis, alpha-2-macroglobulin also has other functions such as switching proteolysis towards small substrates, facilitating cell migration and the binding of cytokines, growth factors and damaged extracellular proteins.

View Article and Find Full Text PDF

Objectives: To explore posttranslational modifications (PTMs), including proteolytic activation, multimerization, complex formation and citrullination of gelatinases, in particular of gelatinase B/MMP-9, and to detect in gelatin-Sepharose affinity-purified synovial fluids, the presence of specific MMP proteoforms in relation to arthritis.

Methods: Latent, activated, complexed and truncated gelatinase-A/MMP-2 and gelatinase B/MMP-9 proteoforms were detected with the use of zymography analysis to compare specific levels, with substrate conversion assays, to test net proteolytic activities and by Western blot analysis to decipher truncation variants. Citrullination was detected with enhanced sensitivity, by the use of a new monoclonal antibody against modified citrullines.

View Article and Find Full Text PDF

Neutrophils are recognized as important circulating effector cells in the pathophysiology of severe coronavirus disease 2019 (COVID-19). However, their role within the inflamed lungs is incompletely understood. Here, we collected bronchoalveolar lavage (BAL) fluids and parallel blood samples of critically ill COVID-19 patients requiring invasive mechanical ventilation and compared BAL fluid parameters with those of mechanically ventilated patients with influenza, as a non-COVID-19 viral pneumonia cohort.

View Article and Find Full Text PDF

Interleukin 7 (IL-7) is a cell growth factor with a central role in normal T cell development, survival and differentiation. The lack of IL-7-IL-7 receptor(R)-mediated signaling compromises lymphoid development, whereas increased signaling activity contributes to the development of chronic inflammation, cancer and autoimmunity. Gain-of-function alterations of the IL-7R and the signaling through Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) are enriched in T cell acute lymphoblastic leukemia (T-ALL) and autocrine production of IL-7 by T-ALL cells is involved in the phenotypes of leukemic initiation and oncogenic spreading.

View Article and Find Full Text PDF

Objectives: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVID-19). We isolated neutrophils from the blood of COVID-19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation.

Methods: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on improving detection methods for immunoreactive molecules in biological samples using a combination of immunosorbent sample preparation and nano-scale liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS).
  • The research specifically investigates the chemokine CXCL8, which has various NH-terminal proteoforms that can significantly enhance its biological activity due to proteolytic modifications.
  • The findings highlight the ability to analyze different forms of CXCL8 in patient samples, revealing specific proteolytic activation patterns in individuals with chronic joint inflammation, emphasizing the critical role of sample collection and processing in such studies.
View Article and Find Full Text PDF
Article Synopsis
  • * Matrix metalloproteinases (MMP-2 and MMP-9) are linked to neuroinflammation and neurodegeneration in Alzheimer’s disease.
  • * The review explores both marine and terrestrial natural compounds that can influence MMP-2 and MMP-9, assessing their therapeutic potential for neurodegenerative diseases like Alzheimer's.
View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are enzymes with critical roles in biology and pathology. Glycosylation, nitrosylation and proteolysis are known posttranslational modifications (PTMs) regulating intrinsically the activities of MMPs. We discovered MMP citrullination by peptidyl arginine deiminases (PADs) as a new PTM.

View Article and Find Full Text PDF

A fundamental part of the immune response to infection or injury is leukocyte migration. Matrix metalloproteinases (MMPs) are a class of secreted or cell-bound endopeptidases, implicated in every step of the process of inflammatory cell migration. Hence, specific inhibition of MMPs is an interesting approach to control inflammation.

View Article and Find Full Text PDF

Apart from producing high bond strength to tooth enamel and dentin, a dental adhesive with biotherapeutic potential is clinically desirable, aiming to further improve tooth restoration longevity. In this laboratory study, an experimental two-step universal adhesive, referred to as Exp_2UA, applicable in both the etch-and-rinse (E&R) and self-etch (SE) modes and combining a primer, containing 10-methacryloyloxydecyldihydrogen phosphate as a functional monomer with chemical binding potential to hydroxyapatite, with a bioglass-containing hydrophobic adhesive resin, was multifactorially investigated. In addition to primary property assessment, including measurement of bond strength, water sorption, solubility, and polymerization efficiency, the resultant adhesive-dentin interface was characterized by transmission electron microscopy (TEM), the filler composition was analyzed by energy-dispersive X-ray spectroscopy, and the bioactive potential of the adhesive was estimated by measuring the long-term ion release and assessing its antienzymatic and antibacterial potential.

View Article and Find Full Text PDF

Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides.

View Article and Find Full Text PDF

The brain's endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS).

View Article and Find Full Text PDF

Proteolysis is a crucial process in life, tightly controlled by numerous natural protease inhibitors. In human blood, alpha-2-macroglobulin is an emergency protease inhibitor preventing coagulation and damage to endothelia and leukocytes. With the use of a unique protease trapping mechanism, alpha-2-macroglobulin lures active proteases into its snap-trap, shields these from potential substrates and 'flags' their complex for elimination by receptor-mediated endocytosis.

View Article and Find Full Text PDF

Interleukin 2 (IL-2) is critical for T cell development and homeostasis, being a key regulator of adaptive immune responses in autoimmunity, hypersensitivity reactions and cancer. Therefore, its abundance in serum and peripheral tissues needs tight control. Here, we described a new mechanism contributing to the immunobiology of IL-2.

View Article and Find Full Text PDF

Systemic Lupus Erythematosus (SLE) is a common and devastating autoimmune disease, characterized by a dysregulated adaptive immune response against intracellular antigens, which involves both autoreactive T and B cells. In SLE, mainly intracellular autoantigens generate autoantibodies and these assemble into immune complexes and activate the classical pathway of the complement system enhancing inflammation. Matrix metalloproteinase-9 (MMP-9) levels have been investigated in the serum of SLE patients and in control subjects.

View Article and Find Full Text PDF

Objectives: Achalasia is a primary esophageal motility disorder resulting from selective loss of inhibitory neurons in the esophageal myenteric plexus, likely due to an autoimmune response with involvement of the adaptive immune system. Innate immune processes of the host constitute the bridge between environmental etiological factors and the adaptive immune system. Although these remain poorly investigated, they might be of diagnostic and therapeutic relevance.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are secreted as proenzymes, containing propeptides that interact with the catalytic zinc, thereby controlling MMP activation. The MMP-9 propeptide is unique in the MMP family because of its post-translational modification with an N-linked oligosaccharide. ProMMP-9 activation by MMP-3 occurs stepwise by cleavage of the propeptide in an aminoterminal (pro-AT) and carboxyterminal (pro-CT) peptide.

View Article and Find Full Text PDF

Gelatin zymography analysis is a sensitive method and commonly used to characterize and quantify the presence of the gelatinases (MMP-2 and MMP-9) in biological samples. In human plasma samples from healthy controls and systemic lupus erythematosus (SLE) patients, we observed a gelatinolytic molecule at 80 kDa, suggestive for activated human MMP-9. However, by developing and using the EDTA/gelatin zymography method and after purification of the 80 kDa entity, we proved that this molecule was the C1s subunit of the complement system.

View Article and Find Full Text PDF