Metachromatic leukodystrophy (MLD) is a progressive demyelinating disorder resulting from the toxic accumulation of sulfatides. The stereotyped neurodegeneration of MLD is well understood, and cases are categorized into subtypes by age at neurologic onset: late infantile (LI), juvenile (J), and adult. The systemic burden of disease, such as gallbladder involvement, however, is less well characterized.
View Article and Find Full Text PDFAicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis.
View Article and Find Full Text PDFRNA polymerase III (POLR3)-related leukodystrophy is a rare, neurodegenerative disorder characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism. Despite the challenges of caring for a child with POLR3-related leukodystrophy, few studies have examined parents' disease burden. We sought to investigate quality of life and stress levels amongst parents of children with POLR3-related leukodystrophy.
View Article and Find Full Text PDFAlthough X-linked adrenoleukodystrophy (ALD) has historically been considered a childhood disease managed by pediatric neurologists, it is one of the most common leukodystrophies diagnosed in adulthood. An increase in both male and female adults reaching diagnosis due to familial cases identified by state newborn screening panels and more widespread use of genetic testing results in a large cohort of presymptomatic or early symptomatic adults. This population is in urgent need of standardized assessments and follow-up care.
View Article and Find Full Text PDFLeukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain.
View Article and Find Full Text PDFInherited white matter disorders (IWMDs) are a phenotypically and genotypically heterogeneous group of disorders affecting the central nervous system (CNS) with or without peripheral neuropathy. They are classified either as leukodystrophies (LDs), with primary glial abnormalities, or genetic leukoencephalopathies (gLEs), where other CNS cells are involved. As a group, these disorders are common, with an incidence of 1 in 7500 births.
View Article and Find Full Text PDFExome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis.
View Article and Find Full Text PDFObjective: Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disorder. Emerging therapies are most effective in the presymptomatic phase, and thus defining this window is critical. We hypothesize that early development delay may precede developmental plateau.
View Article and Find Full Text PDFBackground And Objectives: Aicardi Goutières syndrome (AGS) is type I interferonopathy characterized by severe neurologic impairment. Although many children with AGS demonstrate motor and expressive language deficits, the magnitude of receptive language impairment is uncharacterized. We sought to characterize cognitive function in AGS-affected children using assessment tools with reduced dependence on motor abilities and compare cognitive testing outcomes with overall severity and parental assessment of adaptive behavior.
View Article and Find Full Text PDFType II D-2-Hydroxyglutaric aciduria (T2D2HGA) is caused by a gain-of-function pathogenic variant in Isocitrate Dehydrogenase 2 (IDH2). Patients with T2D2HGA commonly present with developmental delay, seizures, cardiomyopathy, and arrhythmias. The recently approved IDH2-inhibitor Enasidenib targets the p.
View Article and Find Full Text PDFBackground And Purpose: While classic brain MR imaging features of Alexander disease have been well-documented, lesional patterns can overlap with other leukodystrophies, especially in the early stages of the disease or in milder phenotypes. We aimed to assess the utility of a new neuroimaging sign to help increase the diagnostic specificity of Alexander disease.
Materials And Methods: A peculiar bilateral symmetric hyperintense signal on T2-weighted images affecting the medulla oblongata was identified in an index patient with type I Alexander disease.
Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States.
View Article and Find Full Text PDFGrowing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases.
View Article and Find Full Text PDFThe balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS).
View Article and Find Full Text PDFObjectives: Acute reversible leukoencephalopathy with increased urinary alpha-ketoglutarate (ARLIAK) is a recently described autosomal recessive leukoencephalopathy caused by pathogenic variants in the gene. ARLIAK is characterized by acute neurologic involvement, often precipitated by febrile illness, with largely reversible clinical symptoms and imaging findings. Three patients have been reported in the literature to date.
View Article and Find Full Text PDFKagami-Ogata syndrome is a rare imprinting disorder and its phenotypic overlap with multiple different etiologies hampers diagnosis. Genetic etiologies include paternal uniparental isodisomy (upd(14)pat), maternal allele deletions of differentially methylated regions (DMR) in 14q32.2 or pure primary epimutations.
View Article and Find Full Text PDFMutations in Adenosine deaminase acting on RNA 1 (ADAR1) gene encoding RNA editing enzyme ADAR1 results in the neuroinflammatory leukodystrophy Aicardi Goutières Syndrome (AGS). AGS is an early onset leukoencephalopathy with an exacerbated interferon response leading to neurological regression with intellectual disability, spasticity, and motor deficits. We have generated three induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells (PBMCs) of individuals with ADAR1 mutation.
View Article and Find Full Text PDFSulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging.
View Article and Find Full Text PDFA 6-year-old female with a history of Aicardi-Goutières syndrome (AGS) presented to dermatology clinic with hypopigmented and hyperpigmented macules and patches consistent with dyschromatosis symmetrica hereditaria (DSH). Previous genetic workup demonstrated a de novo, heterozygous mutation in the adenosine deaminase acting on RNA 1 (ADAR) gene. While the co-occurrence of AGS and DSH has previously been described in mutations of the ADAR gene, our case highlights the potential association between these disorders that may aid in earlier future diagnosis of AGS.
View Article and Find Full Text PDF