Background: We describe the Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core major activities from October 2004 to March 2024, including biobanking ADNI cerebrospinal fluid (CSF), plasma, and serum biofluid samples, biofluid analyses for Alzheimer's disease (AD) biomarkers in the Biomarker Core and various non-ADNI laboratories, and continuous assessments of pre-analytics.
Results: Validated immunoassay and mass spectrometry-based assays were performed in CSF with a shift to plasma, a more accessible biofluid, as qualified assays became available. Performance comparisons across different CSF and plasma AD biomarker measurement platforms have enriched substantially the ADNI participant database enabling method performance determinations for AD pathology detection and longitudinal assessments of disease progression.
Anti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer's Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use.
View Article and Find Full Text PDFOsteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (Aβ) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into Aβ- (n = 65) and Aβ+ (n = 35) according to their brain Aβ load assessed using Aβ-PET (positron emission tomography) imaging.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
October 2021
Introduction: Blood-based assays to measure brain amyloid beta (Aβ) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure Aβ and how they compare among centers and assays.
Methods: Aliquots from 81 plasma samples were distributed to 10 participating centers.
Plasma biomarkers that reflect specific amyloid beta (Abeta) proteoforms provide an insight in the treatment effects of Alzheimer's disease (AD) therapies. Our aim was to develop and validate ready-to-use Simoa 'Amyblood' assays that measure full length Abeta and Abeta and compare their performance with two commercial assays. Linearity, intra- and inter-assay %CV were compared between Amyblood, Quanterix Simoa triplex, and Euroimmun ELISA.
View Article and Find Full Text PDFBackground: CSF biomarkers are well-established for routine clinical use, yet a paucity of comparative assessment exists regarding CSF extraction methods during lumbar puncture. Here, we compare in detail biomarker profiles in CSF extracted using either gravity drip or aspiration.
Methods: Biomarkers for β-amyloidopathy (Aβ1-42, Aβ1-40), tauopathy (total tau), or synapse pathology (BACE1, Neurogranin Trunc-p75, α-synuclein) were assessed between gravity or aspiration extraction methods in a sub-population of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study (cognitively normal, N = 36; mild cognitive impairment, N = 8; Alzheimer's disease, N = 6).
Plasma amyloid-beta (Aβ) has long been investigated as a blood biomarker candidate for Cerebral Amyloid Angiopathy (CAA), however previous findings have been inconsistent which could be attributed to the use of less sensitive assays. This study investigates plasma Aβ alterations between pre-symptomatic Dutch-type hereditary CAA (D-CAA) mutation-carriers (MC) and non-carriers (NC) using two Aβ measurement platforms. Seventeen pre-symptomatic members of a D-CAA pedigree were assembled and followed up 3-4 years later (NC = 8; MC = 9).
View Article and Find Full Text PDFThe core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers amyloid beta (Aβ42 and Aβ40), total tau, and phosphorylated tau, have been extensively clinically validated, with very high diagnostic performance for AD, including the early phases of the disease. However, between-center differences in pre-analytical procedures may contribute to variability in measurements across laboratories. To resolve this issue, a workgroup was led by the Alzheimer's Association with experts from both academia and industry.
View Article and Find Full Text PDFObjective: The present work was undertaken to study the genetic contribution to the start of Alzheimer's disease (AD) with amyloid and tau biomarkers in cognitively intact older identical twins.
Methods: We studied in 96 monozygotic twin-pairs relationships between amyloid-beta (Aβ) aggregation as measured by the Aβ1-42/1-40 ratio in cerebrospinal fluid (CSF; n = 126) and positron emission tomography (PET, n = 194), and CSF markers for Aβ production (beta-secretase 1, Aβ1-40, and Aβ1-38) and CSF tau. Associations among markers were tested with generalized estimating equations including a random effect for twin status, adjusted for age, gender, and apolipoprotein E ε4 genotype.
Glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein, can be measured in blood samples, and has been associated with Alzheimer's disease (AD). However, plasma GFAP has not been investigated in cognitively normal older adults at risk of AD, based on brain amyloid-β (Aβ) load. Cross-sectional analyses were carried out for plasma GFAP and plasma Aβ1-42/Aβ1-40 ratio, a blood-based marker associated with brain Aβ load, in participants (65-90 years) categorised into low (Aβ-, n = 63) and high (Aβ+, n = 33) brain Aβ load groups via Aβ positron emission tomography.
View Article and Find Full Text PDFBackground: Blood-based biomarkers for Alzheimer's disease (AD) might facilitate identification of participants for clinical trials targeting amyloid beta (Abeta) accumulation, and aid in AD diagnostics. We examined the potential of plasma markers Abeta, glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) to identify cerebral amyloidosis and/or disease severity.
Methods: We included individuals with a positive (n = 176: 63 ± 7 years, 87 (49%) females) or negative (n = 76: 61 ± 9 years, 27 (36%) females) amyloid PET status, with syndrome diagnosis subjective cognitive decline (18 PET+, 25 PET-), mild cognitive impairment (26 PET+, 24 PET-), or AD-dementia (132 PET+).
Increasing evidence suggests that alpha-synuclein (α-syn) oligomers are obligate intermediates in the pathway involved in α-syn fibrillization and Lewy body (LB) formation, and may also accumulate within LBs in Parkinson's disease (PD) and other synucleinopathies. Therefore, the development of tools and methods to detect and quantify α-syn oligomers has become increasingly crucial for mechanistic studies to understand their role in PD, and to develop new diagnostic methods and therapies for PD and other synucleinopathies. The majority of these tools and methods rely primarily on the use of aggregation state-specific or conformation-specific antibodies.
View Article and Find Full Text PDFBackground: The presynaptic protein neuregulin1 (NRG1) is cleaved by beta-site APP cleaving enzyme 1 (BACE1) in a similar way as amyloid precursor protein (APP) NRG1 can activate post-synaptic receptor tyrosine-protein kinase erbB4 (ErbB4) and was linked to schizophrenia. The NRG1/ErbB4 complex is neuroprotective, can trigger synaptogenesis and plasticity, increases the expression of NMDA and GABA receptors, and can induce neuroinflammation. This complex can reduce memory formation.
View Article and Find Full Text PDFBackground: Dementia with Lewy bodies (DLB) is more prevalent in men than in women. In addition, post-mortem studies found sex differences in underlying pathology. It remains unclear whether these differences are also present antemortem in in vivo biomarkers, and whether sex differences translate to variability in clinical manifestation.
View Article and Find Full Text PDFBackground: α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) or dementia with Lewy bodies (DLB).
Main Body: Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies.
Introduction: Amyloid, Tau, and neurodegeneration biomarkers can stage Alzheimer's Disease (AD). Synaptic biomarkers may help track cognition.
Methods: In cognitively normal controls, Mild Cognitive Impairment (MCI) and AD, we investigated CSF biomarkers in relation to cognitive measures and as predictors of cognitive and global decline.
This review aims to document difficulties, limitations, and pitfalls when considering protein analysis in blood samples. It proposes an improved workflow for design, development, and validation of (immuno)assays for blood proteins, without providing reflections on a potential hypothesis of the origin of protein mismetabolism and deposition. There is a special focus on assay development for quantification of β-amyloid (Aβ) and tau in blood for diagnostic use or for integration in clinical trials in the field of Alzheimer's disease (AD).
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2019
Objective: We aimed to investigate the relationship between cerebrospinal fluid levels (CSF) of amyloid precursor protein (APP)-derived peptides related to the amyloidogenic pathway, cortical thickness, neuropsychological performance, and cortical gene expression profiles in frontotemporal lobar degeneration (FTLD)-related syndromes, Alzheimer's disease (AD), and healthy controls.
Methods: We included 214 participants with CSF available recruited at two centers: 93 with FTLD-related syndromes, 57 patients with AD, and 64 healthy controls. CSF levels of amyloid β (Aβ)1-42, Aβ1-40, Aβ1-38, and soluble β fragment of APP (sAPPβ) were centrally analyzed.
Background: Aberrant amyloid-β (Aβ) deposition in the brain occurs two decades prior to the manifestation of Alzheimer's disease (AD) clinical symptoms and therefore brain Aβ load measured using PET serves as a gold standard biomarker for the early diagnosis of AD. However, the uneconomical nature of PET makes blood markers, that reflect brain Aβ deposition, attractive candidates for investigation as surrogate markers.
Objective: Investigation of plasma Aβ as a surrogate marker for brain Aβ deposition in cognitively normal elderly individuals.