Publications by authors named "Vanderploeg H"

Bacteria represent most of the biodiversity and play key roles in virtually every ecosystem. In doing so, bacteria act as part of complex communities shaped by interactions across all domains of life. Here, we report on direct interactions between bacteria and dreissenid mussels, a group of invasive filter-feeders threatening global aquatic systems due to high filtration rates.

View Article and Find Full Text PDF

Microcystis is the predominant genus of harmful cyanobacterium in both Lake Erie and Saginaw Bay of Lake Huron and has the capacity to regulate the buoyancy of its colonies, sinking under certain conditions while floating towards the surface in others. Understanding the factors that control buoyancy is critical for interpretation of remote sensing data, modeling and forecasting harmful algal blooms within these two systems. To determine if Microcystis colony buoyancy in the two lakes responds similarly to diurnal light cycles, colony buoyant velocity (floating/sinking terminal velocity in a quiescent water column) and size were measured after manipulating the intensity of sunlight.

View Article and Find Full Text PDF

Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level.

View Article and Find Full Text PDF

Environmental DNA (eDNA) analysis has advanced conservation biology and biodiversity management. However, accurate estimation of age and origin of eDNA is complicated by particle transport and the presence of legacy genetic material, which can obscure accurate interpretation of eDNA detection and quantification. To understand the state of genomic material within the environment, we investigated the degradation relationships between (a) size of fragments (long vs short), (b) genomic origins (mitochondrial vs nuclear), (c) nucleic acids (eDNA vs eRNA), and (d) RNA types (messenger (m)RNA vs ribosomal (r)RNA) from non-indigenous Dreissena mussels.

View Article and Find Full Text PDF

Determining the degree to which predation affects prey abundance in natural communities constitutes a key goal of ecological research. Predators can affect prey through both consumptive effects (CEs) and nonconsumptive effects (NCEs), although the contributions of each mechanism to the density of prey populations remain largely hypothetical in most systems. Common statistical methods applied to time-series data cannot elucidate the mechanisms responsible for hypothesized predator effects on prey density (e.

View Article and Find Full Text PDF

Species invasion is an important disturbance to ecosystems worldwide, yet knowledge about the impacts of invasive species on bacterial communities remains sparse. Using a novel approach, we simultaneously detected phenotypic and derived taxonomic change in a natural bacterioplankton community when subjected to feeding pressure by quagga mussels, a widespread aquatic invasive species. We detected a significant decrease in diversity within 1 h of feeding and a total diversity loss of 11.

View Article and Find Full Text PDF

One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton.

View Article and Find Full Text PDF

The Chloroflexi CL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake).

View Article and Find Full Text PDF

Phytoplankton and Microcystis aeruginosa (Kütz.) Kütz. biovolumes were characterized and modeled, respectively, with regard to hydrological and meteorological variables during zebra mussel invasion in Saginaw Bay (1990-1996).

View Article and Find Full Text PDF

Zooplankton of the Laurentian Great Lakes developed hernial protrusions whose gross appearance matches those on zooplankton described elsewhere in the world. We have carried out a histologic and cytologic analysis of the protrusions and found that they are composed of apparently degenerating or necrotic tissue(s) that has been expressed from the organism through the process of herniation. At their base the protrusions are continuous with viable tissue(s) within the organism through a fissure in the exoskeleton.

View Article and Find Full Text PDF