Macroalgae are a potentially novel source of nutrition and biologically active molecules. Proliferative species such as , (red algae) and (brown alga) constitute a huge biomass that can be exploited. In this study, we focus on the extraction of polysaccharides from these three macroalgae species and the characterization of cell wall polysaccharides such as carrageenans, fucoidans and alginates by Fourier Transform Infrared spectroscopy with Attenuated Reflectance Module (FTIR-ATR).
View Article and Find Full Text PDFSeaweeds are potentially excellent sources of bioactive metabolites that could represent useful leads in the development of new functional ingredients in pharmaceutical and cosmetic industries. In the last decade, new marine bioprocess technologies have allowed the isolation of substances with biological properties. The brown alga (Yendo) Fensholt (Ochrophyta) was enzymatically hydrolyzed to prepare water-soluble extracts by using six different commercially available carbohydrate-degrading enzymes and two proteases.
View Article and Find Full Text PDFTwo recent techniques based on chemical footprinting analysis, HRMAS NMR and FTIR spectroscopy, were tested on a brown macroalgal model. These powerful and easily-to-use techniques allowed us to discriminate Sargassum muticum specimens collected in five different countries along Atlantic coasts, from Portugal to Norway. HRMAS NMR and FTIR permitted the obtaining of an overview of metabolites produced by the alga.
View Article and Find Full Text PDFA comparative study between "alternative" extraction processes such as centrifugal partition extraction (CPE), supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) and classical solid/liquid used in the laboratory are currently focusing on the efficiency (selectivity and productivity) to obtain bioactive phenolic compounds from the phaeophyte Sargassum muticum model. The choice of the best process was based on several measurements: (i) the total phenolic content measured by the colorimetric Folin-Ciocalteu assay, (ii) radical scavenger and antioxidant activities assessed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, and the β-carotene bleaching method and finally (iii) the method productivity. Irrespective of the solvent used in the processes, alternative methods are always sharply more effective than classical ones.
View Article and Find Full Text PDFBackground: Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides.
View Article and Find Full Text PDF