Histidine is an essential amino acid that is also a precursor for metabolites implicated in the immune system, pulmonary ventilation, and vascular circulation. Absorption of dietary histidine relies largely on the sodium-coupled neutral amino acid transport by the Broad neutral amino acid transporter (BAT) present on the apical membrane of the enterocyte. Here, we demonstrate the absorption of histidine by the intestinal villus enterocytes from the lumen using goat jejunal inverted sacs.
View Article and Find Full Text PDFThe Mycobacterium tuberculosis protein kinase K regulates growth adaptation by facilitating mycobacterial survival in response to a variety of and stress conditions. Here, we further add that transcription is responsive to carbon and nitrogen starvation signals. The increased survival of an M.
View Article and Find Full Text PDFThe DNA polymorphisms found in clinical strains of Mycobacterium tuberculosis drive altered physiology, virulence, and pathogenesis in them. Although the lineages of these clinical strains can be traced back to common ancestor/s, there exists a plethora of difference between them, compared to those that have evolved in the laboratory. We identify a mutation present in ~80% of clinical strains, which maps in the HATPase domain of the sensor kinase MtrB and alters kinase and phosphatase activities, and affects its physiological role.
View Article and Find Full Text PDFCell signaling relies on second messengers to transduce signals from the sensory apparatus to downstream signaling pathway components. In bacteria, one of the most important and ubiquitous second messenger is the small molecule cyclic diguanosine monophosphate (c-di-GMP). While the biosynthesis, degradation, and regulatory pathways controlled by c-di-GMP are well characterized, the mechanisms through which c-di-GMP controls these processes are not entirely understood.
View Article and Find Full Text PDFTwo-component signal transduction (TCS) cascades involve stimulus-dependent activation and phosphorylation of a sensor kinase (SK), which then transfers the phosphoryl moiety to the response regulator (RR) protein. The fidelity of this phosphotransfer reaction from the SK to the RR provides specificity to TCS signaling. In the present study, we show that for TcrX, a transcriptionally autoregulated RR of Mycobacterium tuberculosis, acetylation enhances its net phosphorylation from cognate SK TcrY and lowers it from a non-cognate SK MtrB.
View Article and Find Full Text PDFThe DevR response regulator of is an established regulator of the dormancy response in mycobacteria and can also be activated during aerobic growth conditions in avirulent strains, suggesting a complex regulatory system. Previously, we reported culture medium-specific aerobic induction of the DevR regulon genes in avirulent H37Ra that was absent in the virulent H37Rv strain. To understand the underlying basis of this differential response, we have investigated aerobic expression of the operon using H37Ra and H37Rv overexpression strains, designated as LIX48 and LIX50, respectively.
View Article and Find Full Text PDFToxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (Rel Mtb ): RelBE Mtb , RelFG Mtb and RelJK Mtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ).
View Article and Find Full Text PDFMycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M.
View Article and Find Full Text PDFMycobacterium tuberculosis serine/threonine protein kinases (STPKs) are responsible for orchestrating critical metabolic and physiological changes that dictate mycobacterial growth adaptation. Previously, we established that PknK participates in regulatory pathways that slow the growth of M. tuberculosis in a variety of in vitro stress environments and during persistent infection in mice.
View Article and Find Full Text PDFThe Mycobacterium tuberculosis prrA-prrB (Rv0903c-Rv0902c) two-component regulatory system is expressed during intracellular growth in human macrophages and is required for early intracellular multiplication in murine macrophages, suggesting its importance in establishing infection. To better understand the function of the prrA-prrB two-component system, we defined the transcriptional characteristics of the prrA and prrB genes during exponential and stationary growth and upon exposure to different environmental stresses and attempted to generate a prrA-prrB deletion mutant. The prrA and prrB genes constitute an operon and are cotranscribed during logarithmic growth, with transcriptional levels decreasing in stationary phase and during hypoxia.
View Article and Find Full Text PDFMycobacterium tuberculosis serine/threonine protein kinases (STPKs) are key regulators of growth and metabolism; however, evidence for their roles in virulence is limited. In a preliminary screen based on comparative expression between strains H37Rv and H37Ra, six STPK genes, pknD, pknG, pknH, pknJ, pknK and pknL, showed higher expression in H37Rv. In the second screen, STPK expression was analysed in H37Rv-infected human macrophages.
View Article and Find Full Text PDFThe DevR transcriptional switch that defines the response of Mycobacterium tuberculosis to the lack of oxygen is now well established and likely helps the bacteria shift to a state of persistence. The M. tuberculosis two component signal transduction system (TCS), DevR-DevS, implicated in this transition to latency, is differentially expressed in H37Ra and H37Rv strains.
View Article and Find Full Text PDFRv2027c is a putative orphan histidine sensor kinase that bears strong homology to DevS of the hypoxia-responsive DevR-DevS two-component system in M. tuberculosis. The cytosolic C-terminal domain of Rv2027c protein (Rv2027c(194)) was overexpressed in E.
View Article and Find Full Text PDFTwo-component systems play a central role in the adaptation of pathogenic bacteria to the environment prevailing within host tissues. The genes encoding the response regulator DevR (Rv3133c/DosR) and the cytoplasmic portion (DevS(201)) of the histidine kinase DevS (Rv3132c/DosS), a putative two-component system of Mycobacterium tuberculosis, were cloned and the protein products were overexpressed, purified and refolded as N-terminally His(6)-tagged proteins from Escherichia coli. DevS(201) underwent autophosphorylation and participated in rapid phosphotransfer to DevR in a Mg(2+)-dependent manner.
View Article and Find Full Text PDFThe devR-devS two-component system of Mycobacterium tuberculosis was identified earlier and partially characterized in our laboratory. A devR::kan mutant of M. tuberculosis was constructed by allelic exchange.
View Article and Find Full Text PDF