Publications by authors named "Vandana A Gupta"

Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder associated with 1/3000 to 1/5000 live births. We report a consanguineous family with multiple affected members with AMC and identified a recessive mutation in the highly conserved splice donor site, resulting in the mis-splicing of the affected exons. SENP7 is a deSUMOylase that is critical for sarcomere assembly and skeletal muscle contraction by regulating the transcriptional program in the skeletal muscle.

View Article and Find Full Text PDF

Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models.

View Article and Find Full Text PDF

Mutations in the gene cause severe illness in humans, including life-threatening metabolic crises. However, the function of TANGO2 protein remains unknown. Using and other models, it has recently been proposed that TANGO2 transports heme within and between cells, from areas with high heme concentrations to those with lower concentrations.

View Article and Find Full Text PDF

Rhabdomyolysis is a clinical emergency characterized by severe muscle damage, resulting in the release of intracellular muscle components, which leads to myoglobinuria and, in severe cases, acute kidney failure. Rhabdomyolysis is caused by genetic factors linked to increased disease susceptibility in response to extrinsic triggers. Recessive mutations in TANGO2 result in episodic rhabdomyolysis, metabolic crises, encephalopathy and cardiac arrhythmia.

View Article and Find Full Text PDF

Ubiquitin-proteasome system (UPS) dysfunction is associated with the pathology of a wide range of human diseases, including myopathies and muscular atrophy. However, the mechanistic understanding of specific components of the regulation of protein turnover during development and disease progression in skeletal muscle is unclear. Mutations in , an E3 ubiquitin ligase cullin3 (CUL3) substrate-specific adapter protein, result in severe congenital nemaline myopathy, but the events that initiate the pathology and the mechanism through which it becomes pervasive remain poorly understood.

View Article and Find Full Text PDF

Nemaline myopathy is a skeletal muscle disease that affects 1 in 50 000 live births. The objective of this study was to develop a narrative synthesis of the findings of a systematic review of the latest case descriptions of patients with NM. A systematic search of MEDLINE, Embase, CINAHL, Web of Science, and Scopus was performed using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines using the keywords , , , , and .

View Article and Find Full Text PDF

Nemaline myopathy (NM) is a rare neuromuscular disorder associated with congenital or childhood-onset of skeletal muscle weakness and hypotonia, which results in limited motor function. NM is a genetic disorder and mutations in 12 genes are known to contribute to autosomal dominant or recessive forms of the disease. Recessive mutations in nebulin (NEB) are the most common cause of NM affecting about 50% of patients.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is caused by DMD mutations leading to dystrophin loss. Full-length Dp427 is the primary dystrophin isoform expressed in muscle and is also expressed in the central nervous system (CNS). Two shorter isoforms, Dp140 and Dp71, are highly expressed in the CNS.

View Article and Find Full Text PDF

GOGLA2/GM130 is a Golgin protein involved in vesicle tethering, cell proliferation and autophagy. Recessive loss of function mutation in GOLGA2 has been previously reported in a single family with muscular dystrophy and microcephaly. Here we describe a second consanguineous family with the bi-allelic loss of function mutations in GOLGA2.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage.

View Article and Find Full Text PDF

Introduction: RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1.

View Article and Find Full Text PDF

Objective: Recessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy.

View Article and Find Full Text PDF

Objective: To identify the genetic cause of disease in a form of congenital spinal muscular atrophy and arthrogryposis (CSMAA).

Methods: A 2-year-old boy was diagnosed with arthrogryposis multiplex congenita, severe skeletal abnormalities, torticollis, vocal cord paralysis, and diminished lower limb movement. Whole-exome sequencing (WES) was performed on the proband and family members.

View Article and Find Full Text PDF

Nemaline myopathy (NM) is the most common form of congenital myopathy that results in hypotonia and muscle weakness. This disease is clinically and genetically heterogeneous, but three recently discovered genes in NM encode for members of the Kelch family of proteins. Kelch proteins act as substrate-specific adaptors for Cullin 3 (CUL3) E3 ubiquitin ligase to regulate protein turnover through the ubiquitin-proteasome machinery.

View Article and Find Full Text PDF

The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement.

View Article and Find Full Text PDF

Facioscapulohumeral dystrophy type 1 (FSHD-1) is the most common autosomal dominant form of muscular dystrophy with a prevalence of ∼1 in 8000 individuals. It is considered a late-onset form of muscular dystrophy and leads to asymmetric muscle weakness in the facial, scapular, trunk and lower extremities. The prevalent hypothesis on disease pathogenesis is explained by misexpression of a germ line, primate-specific transcription factor DUX4-fl (double homeobox 4, full-length isoform) linked to the chromosome 4q35.

View Article and Find Full Text PDF

Despite major progress in defining the genetic basis of Mendelian disorders, the molecular etiology of many cases remains unknown. Patients with these undiagnosed disorders often have complex presentations and require treatment by multiple health care specialists. Here, we describe an integrated clinical diagnostic and research program using whole-exome and whole-genome sequencing (WES/WGS) for Mendelian disease gene discovery.

View Article and Find Full Text PDF

Zebrafish are a preferred vertebrate model for delineating genotype-phenotype relationships. One of the most studied features of zebrafish is their exceptional swimming ability. By 7 days postfertilization (dpf), zebrafish spend over two-thirds of their time engaged in spontaneous swimming activity and several months later they are capable of attaining some of the fastest swimming velocities relative to body length ever recorded in the laboratory.

View Article and Find Full Text PDF
Article Synopsis
  • Gene expression in tissues is influenced by epigenetic, transcriptional, and post-transcriptional processes that determine cellular identity through protein production.
  • A study identified DDX27, a DEAD-Box RNA helicase, as essential for growth and regeneration in skeletal muscle, suggesting its role in myogenesis.
  • DDX27 is crucial for the maturation of ribosomal RNA, impacting ribosome biogenesis and the translation of specific genes in muscle development.
View Article and Find Full Text PDF

Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease.

View Article and Find Full Text PDF

Objective: Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation.

Methods: We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41.

View Article and Find Full Text PDF

Myopathies are heterogeneous disorders characterized clinically by weakness and hypotonia, usually in the absence of gross dystrophic changes. Mitochondrial dysfunction is a frequent cause of myopathy. We report a simplex case born to consanguineous parents who presented with muscle weakness, lactic acidosis, and muscle changes suggestive of mitochondrial dysfunction.

View Article and Find Full Text PDF

Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM.

View Article and Find Full Text PDF

Lethal congenital contracture syndrome (LCCS) is a lethal autosomal recessive form of arthrogryposis multiplex congenita (AMC). LCCS is genetically heterogeneous with mutations in five genes identified to date, all with a role in the innervation or contractile apparatus of skeletal muscles. In a consanguineous Saudi family with multiple stillbirths presenting with LCCS, we excluded linkage to all known LCCS loci and combined autozygome analysis and whole-exome sequencing to identify a novel homozygous variant in ZBTB42, which had been shown to be enriched in skeletal muscles, especially at the neuromuscular junction.

View Article and Find Full Text PDF