Publications by authors named "Vanbever R"

Human neutrophil elastase (hNE), a serine protease released by neutrophils during inflammation, plays a major role in the pathophysiology of several conditions especially in inflammatory lung diseases. Its inhibition constitutes, therefore, a promising therapeutic strategy to combat these diseases. In this work, we characterized the in vitro properties of a VHH (i.

View Article and Find Full Text PDF

Spray drying is a widely employed method for generating dry powder formulations for inhalation. Yet, it presents substantial challenges when applied to therapeutic proteins due to stability issues. The formation of protein aggregates during the atomization and the heating steps can diminish protein activity and raise immunogenicity concerns.

View Article and Find Full Text PDF

Background: Biofilm-associated pulmonary infections pose therapeutic challenges in cystic fibrosis patients, especially when involving multiple bacterial species. Enzymatic degradation of the biofilm matrix may offer a potential solution to enhance antibiotic efficacy. This study investigated the repurposing of DNase I, commonly used for its mucolytic activity in cystic fibrosis, to target extracellular DNA within biofilms, as well as potential synergies with alginate lyase and broad-spectrum antibiotics in dual-species biofilms of Pseudomonas aeruginosa and Staphylococcus aureus.

View Article and Find Full Text PDF

Recombinant human deoxyribonuclease I (rhDNase, Pulmozyme®) is the most frequently used mucolytic agent for the symptomatic treatment of cystic fibrosis (CF) lung disease. Conjugation of rhDNase to polyethylene glycol (PEG) has been shown to greatly prolong its residence time in the lungs and improve its therapeutic efficacy in mice. To present an added value over current rhDNase treatment, PEGylated rhDNase needs to be efficiently and less frequently administrated by aerosolization and possibly at higher concentrations than existing rhDNase.

View Article and Find Full Text PDF

Conjugation to polyethylene glycol (PEG) is a widely used approach to improve the therapeutic value of proteins essentially by prolonging their body residence time. PEGylation may however induce changes in the structure and/or the stability of proteins and thus on their function(s). The effects of PEGylation on the thermodynamic stability can either be positive (stabilization), negative (destabilization), or neutral (no effect).

View Article and Find Full Text PDF

Alpha-1 antitrypsin (AAT) is an endogenous inhibitor of serine proteases which, in physiological conditions, neutralizes the excess of neutrophil elastase and other serine proteases in tissues and especially the lungs. Weekly intravenous infusion of plasma-purified human AAT is used to treat AAT deficiency-associated lung disease. However, only 2 % of the AAT dose reach the lungs after intravenous infusion.

View Article and Find Full Text PDF

Objectives: Two CFTR-dependent β-adrenergic sweat rate tests applying intradermal drug injections were reported to better define diagnosis and efficacy of CFTR-directed therapies. The aim of this work was to develop and test a needle-free image-based test and to provide an accurate analysis of the responses.

Methods: The modified method was conducted by applying two successive iontophoresis sessions using the Macroduct device.

View Article and Find Full Text PDF

Immunotherapy brings new hope to the fight against lung cancer. General immunostimulatory agents represent an immunotherapy strategy that has demonstrated efficacy with limited toxicity when delivered intratumorally. The goal of this study was to enhance the antitumor efficacy of unmethylated oligodeoxynucleotides containing CpG motifs (CpG) and polyinosinic-polycytidylic acid (poly I:C) double-stranded RNA following their local delivery in lung cancer by encapsulating them in liposomes.

View Article and Find Full Text PDF

Conjugation to high molecular weight (MW ≥ 20 kDa) polyethylene glycol (PEG) was previously shown to largely prolong the lung residence time of recombinant human deoxyribonuclease I (rhDNase) and improve its therapeutic efficacy following pulmonary delivery in mice. In this paper, we investigated the mechanisms promoting the extended lung retention of PEG-rhDNase conjugates using cell culture models and lung biological media. Uptake by alveolar macrophages was also assessed in vivo.

View Article and Find Full Text PDF

Conjugation of recombinant human deoxyribonuclease I (rhDNase) to polyethylene glycol (PEG) of 20 to 40 kDa was previously shown to prolong the residence time of rhDNase in the lungs of mice after pulmonary delivery while preserving its full enzymatic activity. This work aimed to study the fate of native and PEGylated rhDNase in the lungs and to elucidate their biodistribution and elimination pathways after intratracheal instillation in mice. In vivo fluorescence imaging revealed that PEG30 kDa-conjugated rhDNase (PEG30-rhDNase) was retained in mouse lungs for a significantly longer period of time than native rhDNase (12 days vs 5 days).

View Article and Find Full Text PDF

The WST-1 assay is the most common test to assess the in vitro cytotoxicity of chemicals. Tetrazolium-based assays can, however, be affected by the interference of tested chemicals, including carbon nanotubes or Mg particles. Here, we report a new interference of Mn materials with the WST-1 assay.

View Article and Find Full Text PDF

Vaccination the pulmonary route could be an attractive alternative to parenteral administration. Research towards the best site of antigen deposition within the lungs to induce optimal immune responses has conflicting results which might be dependent on the type of vaccine and/or its physical state. Therefore, in this study, we explored whether deep lung deposition is crucial for two different vaccines, .

View Article and Find Full Text PDF

Background: Li-ion batteries (LIB) are increasingly used worldwide. They are made of low solubility micrometric particles, implying a potential for inhalation toxicity in occupational settings and possibly for consumers. LiCoO (LCO), one of the most used cathode material, induces inflammatory and fibrotic lung responses in mice.

View Article and Find Full Text PDF

PEGylation is a promising approach to increase the residence time of antibody fragments in the lungs and sustain their therapeutic effects. However, concerns arise as to the potential pulmonary toxicity of antibody fragments conjugated to high molecular weight (HMW) polyethylene glycol (PEG), notably after repeated administrations, and the possibility of PEG accumulation in the lungs. The purpose of this proof-of-concept study is to give insights about the safety of lung administration of a Fab' anti-IL17A antibody fragment conjugated to two-armed 40 kDa PEG (PEG40).

View Article and Find Full Text PDF

is a highly prevalent pathogen in the respiratory tract of young patients with cystic fibrosis (CF) and causes biofilm-related infections. Here, we set up an model of a biofilm grown in Trypticase soy broth supplemented with glucose and NaCl (TGN) or in artificial sputum medium (ASM) and used it to evaluate on a pharmacodynamic basis the activity of antibiotics used in CF patients and active on staphylococci (meropenem, vancomycin, azithromycin, linezolid, rifampin, ciprofloxacin, tobramycin). Rheological studies showed that ASM was more elastic than viscous, as was also observed for sputa from CF patients, with elastic and viscous moduli being, respectively, similar to and slightly lower than those of CF sputa.

View Article and Find Full Text PDF

The purpose of this study was to assess whether cationic nanoliposomes could address tumor vaccines to dendritic cells in the lungs in vivo. Nanoliposomes were prepared using a cationic lipid, dimethylaminoethanecarbamoyl-cholesterol (DC-cholesterol) or dioleoyltrimethylammoniumpropane (DOTAP), and dipalmitoylphosphatidylcholine (DPPC), the most abundant phospholipid in lung surfactant. The liposomes presented a size below 175 nm and they effectively entrapped tumor antigens, an oligodeoxynucletotide containing CpG motifs (CpG) and the fluorescent dye calcein used as a tracer.

View Article and Find Full Text PDF

Administration of influenza vaccines via the respiratory tract has potential benefits over conventional parenteral administration, inducing immunity directly at the site of influenza exposure as well as being needle free. In this study, we investigated the suitability of Advax™, a stable particulate polymorph of inulin, also referred to as delta inulin, as a mucosal adjuvant for whole inactivated influenza vaccine (WIV) administered either as a liquid or dry powder formulation. Spray freeze-drying produced Advax-adjuvanted WIV powder particles in a size range (1-5 μm) suitable for inhalation.

View Article and Find Full Text PDF

Highly viscous mucus and its impaired clearance characterize the lungs of patients with cystic fibrosis (CF). Pulmonary secretions of patients with CF display increased concentrations of high molecular weight components such as DNA and actin. Recombinant human deoxyribonuclease I (rhDNase) delivered by inhalation cleaves DNA filaments contained in respiratory secretions and thins them.

View Article and Find Full Text PDF

Rechargeable Li-ion batteries (LIB) are increasingly produced and used worldwide. LIB electrodes are made of micrometric and low solubility particles, consisting of toxicologically relevant elements. The health hazard of these materials is not known.

View Article and Find Full Text PDF

Pulmonary administration of anti-cytokine antibodies offers a targeted therapy in asthma. However, the rapid elimination of proteins from the lungs limits the efficacy of inhaled medications. PEGylation has been shown to increase the residence time of anti-interleukin (IL)-17A and anti-IL-13 antibody fragments in the lungs and to improve their therapeutic efficacy.

View Article and Find Full Text PDF

Recombinant human deoxyribonuclease I (rhDNase) is the mucolytic agent most widely used for the treatment of respiratory disease in cystic fibrosis. However, rhDNase is rapidly cleared from the lungs which implies a high dosing frequency and limited patient adherence. The aim of this study was to produce a long-acting PEGylated derivative of rhDNase presenting a preserved enzymatic activity.

View Article and Find Full Text PDF

The PEGylation of antibody fragments has been shown to greatly prolong their residence time in the lungs in mice. The purpose of this research was to confirm the effect of PEGylation in higher animal species, that is, the rat and the rabbit. An anti-IL-17A Fab' antibody fragment was conjugated to a two-armed 40kDa polyethylene glycol (PEG) via site-selective thiol PEGylation.

View Article and Find Full Text PDF

Purpose: To compare in vivo the total and regional pulmonary deposition of aerosol particles generated by a new system combining a vibrating-mesh nebulizer with a specific valved holding chamber and constant-output jet nebulizer connected to a corrugated tube.

Methods: Cross-over study comparing aerosol delivery to the lungs using two nebulizers in 6 healthy male subjects: a vibrating-mesh nebulizer combined with a valved holding chamber (Aerogen Ultra®, Aerogen Ltd., Galway, Ireland) and a jet nebulizer connected to a corrugated tube (Opti-Mist Plus Nebulizer®, ConvaTec, Bridgewater, NJ).

View Article and Find Full Text PDF

Pulmonary delivery offers an attractive route of administration for chemotherapeutic agents, with the advantages of high drug concentrations locally and low side effects systemically. However, fast clearance mechanisms result in short residence time of small molecule drugs in the lungs. Moreover, the local toxicity induced by antineoplastic drugs is considered a major obstacle for the clinical application of inhaled chemotherapy.

View Article and Find Full Text PDF