Increased nonenzymatic glycation of apolipoprotein (apo) B-containing lipoproteins impairs uptake and metabolism by the high-affinity low-density lipoprotein receptor and is one of the postsecretory modifications contributory to accelerated atherosclerosis in diabetes. The present study evaluated in vitro and in vivo effects of 2,2-chlorophenylaminophenylacetate to probe the influence of glycated lipoprotein on cholesterol homeostasis. This compound prevented the increased formation of glycated products in low-density lipoprotein incubated with 200 mmol/L glucose and the increased cholesteryl ester synthesis in THP-1 macrophages induced by apo B-containing lipoproteins preincubated with high glucose concentration.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2008
Purpose: Albumin modified by Amadori glucose adducts is a plasma-borne factor that activates cell signaling pathways, modulates the expression of growth factors and cytokines, and participates in the pathogenesis of microvascular complications of diabetes. In the present study, streptozotocin diabetic rats were treated with an orally administered compound that inhibits the nonenzymatic glycation of albumin to evaluate whether increased glycated albumin contributes to diabetes-associated abnormalities in the vitreous fluid.
Methods: Vitreous obtained from age-matched nondiabetic and streptozotocin-diabetic rats, half of which received the test compound 2-(3-chlorophenylamino) phenylacetic acid (23CPPA) by oral gavage for 26 weeks, was analyzed by immunoassay for pigment epithelium-derived factor (PEDF), vascular endothelial growth factor (VEGF) and glycated albumin content, by measurement of thiobarbituric acid reactive substances (TBARs) for lipid peroxide products and by colorimetric assay for hyaluronan content.