Publications by authors named "Van-Thai Tran"

Non-invasive human-machine interactions (HMIs) are expected to be promoted by epidermal tactile receptive devices that can accurately perceive human activities. In reality, however, the HMI efficiency is limited by the unsatisfactory perception capability of mechanosensors and the complicated techniques for device fabrication and integration. Herein, a paradigm is presented for high-throughput fabrication of multimodal epidermal mechanosensors based on a sequential "femtosecond laser patterning-elastomer infiltration-physical transfer" process.

View Article and Find Full Text PDF

Airflow sensor is a crucial component for monitoring environmental airflow conditions in many engineering fields, especially in the field of aerospace engineering. However, conventional airflow sensors have been suffering from issues such as complexity and bulk in structures, high cost in fabrication and maintenance, and low stability and durability. In this work, we developed a facile direct-writing method for fabricating a low-cost piezoresistive element aiming at high-performance airflow sensing, in which a commercial pen was utilized to drop solutions of single-walled carbon nanotubes onto tissue paper to form a piezoresistive sensing element.

View Article and Find Full Text PDF

Reconstructing of cell architecture plays a vital role in tissue engineering. Recent developments of self-assembling of cells into three-dimensional (3D) matrix pattern using surface acoustic waves have paved a way for a better tissue engineering platform thanks to its unique properties such as nature of noninvasive and noncontact, high biocompatibility, low-power consumption, automation capability, and fast actuation. This article discloses a method to manipulate the orientation and curvature of 3D matrix pattern by redesigning the top wall of microfluidic chamber and the technique to create a 3D longitudinal pattern along preinserted polydimethylsiloxane (PDMS) rods.

View Article and Find Full Text PDF

Fabrication of printed electronic devices along with other parts such as supporting structures is a major problem in modern additive fabrication. Solution-based inkjet printing of metal oxide semiconductor usually requires a heat treatment step to facilitate the formation of target material. The employment of external furnace introduces additional complexity in the fabrication scheme, which is supposed to be simplified by the additive manufacturing process.

View Article and Find Full Text PDF

Photodetectors, which are capable of detecting light with varied wavelength, have nowadays been widely applied onto emerging fields such as security, entertainment, healthcare, environment, and so on. As the one with a two-dimensional layered structure, molybdenum disulfide (MoS) possesses striking optical and electrical properties that can be used in photodetecting, yet the challenges remain in terms of material processing, device fabrication simplicity, and enhancement of overall photodetection performance. In this work, a photodetectable paper based on a mixture of double-phased MoS (1T and 2H) and MoO was successfully fabricated through a straightforward route, that is, chemical exfoliation and deposition of MoS powder on a flexible cellulose ester membrane, followed by inkjet-printed PEDOT:PSS as electrodes.

View Article and Find Full Text PDF

The increasing demand for wearable optoelectronics in biomedicine, prosthetics, and soft robotics calls for innovative and transformative technologies that permit facile fabrication of compact and flexible photodetectors with high performance. Herein, by developing a single-step selective laser writing strategy that can finely tailor material properties through incident photon density control and lead to the formation of hierarchical hybrid nanocomposites, e.g.

View Article and Find Full Text PDF

A wearable and flexible pressure sensor is essential to the realization of personalized medicine through continuously monitoring an individual's state of health and also the development of a highly intelligent robot. A flexible, wearable pressure sensor is fabricated based on novel single-wall carbon nanotube /tissue paper through a low-cost and scalable approach. The flexible, wearable sensor showed superior performance with concurrence of several merits, including high sensitivity for a broad pressure range and an ultralow energy consumption level of 10 W.

View Article and Find Full Text PDF

Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied.

View Article and Find Full Text PDF

Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated.

View Article and Find Full Text PDF

Inkjet printing is a powerful and cost-effective technique for deposition of liquid inks with high accuracy, which is not only of great significance for graphic applications but also has enormous potential for the direct printing of optoelectronic devices. This review highlights a comprehensive overview of the progress that has been made in optoelectronics fabrication by the inkjet printing technique. The first part briefly covers the droplet-generation process in the nozzles of printheads and the physical properties affecting droplet formation and the profiles of the printed patterns.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf8lau6i7cssob69tnvh8u48u2vfv2cja): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once