N-methylcytosine (4mC) is a modified form of cytosine found in DNA, contributing to epigenetic regulation. It exists in various genomes, including the Rosaceae family encompassing significant fruit crops like apples, cherries, and roses. Previous investigations have examined the distribution and functional implications of 4mC sites within the Rosaceae genome, focusing on their potential roles in gene expression regulation, environmental adaptation, and evolution.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
July 2024
Introduction: This review explores the transformative impact of machine learning (ML) on carcinogenicity prediction within drug development. It discusses the historical context and recent advancements, emphasizing the significance of ML methodologies in overcoming challenges related to data interpretation, ethical considerations, and regulatory acceptance.
Areas Covered: The review comprehensively examines the integration of ML, deep learning, and diverse artificial intelligence (AI) approaches in various aspects of drug development safety assessments.
Adaptor proteins (APs) are a family of proteins that aids in intracellular membrane trafficking, and their impairments or defects are closely related to various disorders. Traditional methods to identify and classify APs require time and complex techniques, which were then advanced by machine learning and computational approaches to facilitate the APs recognition task. However, most studies focused on recognizing separate ones in the APs family or the APs in general with non-APs, lacking one comprehensive strategy to distinguish the complexes of AP subtypes.
View Article and Find Full Text PDFA promoter is a sequence of DNA that initializes the process of transcription and regulates whenever and wherever genes are expressed in the organism. Because of its importance in molecular biology, identifying DNA promoters are challenging to provide useful information related to its functions and related diseases. Several computational models have been developed to early predict promoters from high-throughput sequencing over the past decade.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
April 2020
Protein succinylation is a biochemical reaction in which a succinyl group (-CO-CH2-CH2-CO-) is attached to the lysine residue of a protein molecule. Lysine succinylation plays important regulatory roles in living cells. However, studies in this field are limited by the difficulty in experimentally identifying the substrate site specificity of lysine succinylation.
View Article and Find Full Text PDFDeep learning has been increasingly and widely used to solve numerous problems in various fields with state-of-the-art performance. It can also be applied in bioinformatics to reduce the requirement for feature extraction and reach high performance. This study attempts to use deep learning to predict SNARE proteins, which is one of the most vital molecular functions in life science.
View Article and Find Full Text PDFProtein ubiquitylation catalyzed by E3 ubiquitin ligases are crucial in the regulation of many cellular processes. Owing to the high throughput of mass spectrometry-based proteomics, a number of methods have been developed for the experimental determination of ubiquitylation sites, leading to a large collection of ubiquitylation data. However, there exist no resources for the exploration of E3-ligase-associated regulatory networks of for ubiquitylated proteins in humans.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2017
Protein ubiquitination, involving the conjugation of ubiquitin on lysine residue, serves as an important modulator of many cellular functions in eukaryotes. Recent advancements in proteomic technology have stimulated increasing interest in identifying ubiquitination sites. However, most computational tools for predicting ubiquitination sites are focused on small-scale data.
View Article and Find Full Text PDFBackground: In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites become available, it becomes possible to develop prediction models that can be scaled to big data.
View Article and Find Full Text PDF