The detection of ampicillin plays a crucial role in managing and monitoring its usage and resistance. This study introduces a simple and effective biosensor for ampicillin detection, utilizing the unique absorbance features of Mn-doped ZnS capped by chitosan micromaterials in conjunction with β-lactamase activity. The biosensors can detect ampicillin concentrations from 13.
View Article and Find Full Text PDFThe global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic.
View Article and Find Full Text PDFAlthough sensor technology has advanced with better materials, biomarkers, and fabrication and detection methods, creating a rapid, accurate, and affordable bacterial detection platform is still a major challenge. In this study, we present a combination of hybrid-MoS2 nanosheets and an amine-customized probe to develop a fast, sensitive biosensor for Bacillus subtilis DNA detection. Based on fluorescence measurements, the biosensor exhibits a detection range of 23.
View Article and Find Full Text PDFThe tungsten inert gas (TIG) welding method most commonly used to weld ferrous metals, nonferrous metals, and other metals since it is simple, easily implemented, and achieves consistent high-quality welds. In this study, butt joints produced between aluminum alloy A6061-T6 and stainless steel SUS304L have been achieved by using TIG welding with ER4047 filler metal. The macrostructure and microstructure of the resulting specimens were analyzed by means of an optical microscope (OM), a scanning electron microscope (SEM), and an energy dispersive X-ray spectrometer (EDS).
View Article and Find Full Text PDF