In this report, we focus our effort to extract cellulose nanomaterials (CNs) from an agricultural cellulosic waste, Dragon Fruit foliage (DFF). DFF was first pretreated by several mechanical treatments and then bleached by chemical treatment to obtain bleached DFF. CNs were then produced from the hydrolysis of the bleached DFF catalyzed by sulfuric acid.
View Article and Find Full Text PDFAn electron donor-acceptor dyad has been designed for the creation of large-area molecular junctions (MJ). Diazonium cation electrografting was used to form well controlled monolayers. The robustness of the monolayer enabled the creation of MJs using direct top-coat evaporation with a high yield of operating devices.
View Article and Find Full Text PDFA bottom-up electrochemical process for fabricating conjugated ultrathin layers with tailored switchable properties is developed. Ultrathin layers of covalently grafted oligo(bisthienylbenzene) (oligo(BTB)) are used as switchable organic electrodes, and 3,4-ethylenedioxythiophene (EDOT) is oxidized on this layer. Adding only a few (less than 3) nanometers of EDOT moieties (5 to 6 units ) completely changes the switching properties of the layer without changing the surface concentration of the electroactive species.
View Article and Find Full Text PDF