Although integrated joint torque sensors in robots dispel the need for external force/torque sensors at the wrist to measure interactions, an inherent challenge is that they also measure the robot's intrinsic dynamics. This is especially problematic for delicate robot manipulation tasks, where interaction forces may be comparable to the robot intrinsic dynamics. Therefore, the intrinsic dynamics must first be experimentally estimated under no-load conditions, when the measurement only consists of torques due to the transmission of the robot actuator, before external interactions may be measured.
View Article and Find Full Text PDFThe autonomous manipulation of objects by robotic grippers has made significant strides in enhancing both human daily life and various industries. Within a brief span, a multitude of research endeavours and gripper designs have emerged, drawing inspiration primarily from biological mechanisms. It is within this context that our study takes centre stage, with the aim of conducting a meticulous review of bioinspired grippers.
View Article and Find Full Text PDFMicromachines (Basel)
July 2023
Nowadays, achieving the stable grasping of objects in robotics requires an increased emphasis on soft interactions. This research introduces a novel gripper design to achieve a more universal object grasping. The key feature of this gripper design was a hybrid mechanism that leveraged the soft structure provided by multiple granular pouches attached to the finger skeletons.
View Article and Find Full Text PDF