Publications by authors named "Van Neste Christophe"

Purpose: Laparoscopic adjustable gastric band (LAGB) has high technical and weight loss failure rates. We evaluate here the 1-year morbidity, mortality, and weight loss of laparoscopic Roux-en-Y-gastric bypass (LRYGB) as a feasible conversion strategy.

Methods: Patients with a failed primary LAGB who underwent LRYGB from July 2004 to December 2019 were selected from an electronic database at our center.

View Article and Find Full Text PDF

The pediatric extra-cranial tumor neuroblastoma displays a low mutational burden while recurrent copy number alterations are present in most high-risk cases. Here, we identify SOX11 as a dependency transcription factor in adrenergic neuroblastoma based on recurrent chromosome 2p focal gains and amplifications, specific expression in the normal sympatho-adrenal lineage and adrenergic neuroblastoma, regulation by multiple adrenergic specific (super-)enhancers and strong dependency on high SOX11 expression in adrenergic neuroblastomas. SOX11 regulated direct targets include genes implicated in epigenetic control, cytoskeleton and neurodevelopment.

View Article and Find Full Text PDF

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN.

View Article and Find Full Text PDF

Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a worldwide leading cause of childhood cancer-related deaths. About half of high-risk patients die from the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas present with a low mutational burden, focal and large segmental DNA copy number aberrations are highly recurrent and associated with poor survival.

View Article and Find Full Text PDF

Knowing metastasis is the primary cause of cancer-related deaths, incentivized research directed towards unraveling the complex cellular processes that drive the metastasis. Advancement in technology and specifically the advent of high-throughput sequencing provides knowledge of such processes. This knowledge led to the development of therapeutic and clinical applications, and is now being used to predict the onset of metastasis to improve diagnostics and disease therapies.

View Article and Find Full Text PDF

MYCN is an oncogenic driver in neural crest-derived neuroblastoma and medulloblastoma. To better understand the early effects of MYCN activation in a neural-crest lineage context, we profiled the transcriptome of immortalized human retina pigment epithelial cells with inducible MYCN activation. Gene signatures associated with elevated MYC/MYCN activity were induced after 24 h of MYCN activation, which attenuated but sustained at later time points.

View Article and Find Full Text PDF

T-cells are a subtype of white blood cells circulating throughout the body, searching for infected and abnormal cells. They have multifaceted functions that include scanning for and directly killing cells infected with intracellular pathogens, eradicating abnormal cells, orchestrating immune response by activating and helping other immune cells, memorizing encountered pathogens, and providing long-lasting protection upon recurrent infections. However, T-cells are also involved in immune responses that result in organ transplant rejection, autoimmune diseases, and some allergic diseases.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) and embryonal tumors share a number of common features, including a compromised G1/S checkpoint. Consequently, these rapidly dividing hESCs and cancer cells undergo elevated levels of replicative stress, inducing genomic instability that drives chromosomal imbalances. In this context, it is of interest that long-term in vitro cultured hESCs exhibit a remarkable high incidence of segmental DNA copy number gains, some of which are also highly recurrent in certain malignancies such as 17q gain (17q+).

View Article and Find Full Text PDF

Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis.

View Article and Find Full Text PDF

Neuroblastoma is an aggressive childhood cancer arising from sympatho-adrenergic neuronal progenitors. The low survival rates for high-risk disease point to an urgent need for novel targeted therapeutic approaches. Detailed molecular characterization of the neuroblastoma genomic landscape indicates that ALK-activating mutations are present in 10% of primary tumours.

View Article and Find Full Text PDF

Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system.

View Article and Find Full Text PDF

In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers.

View Article and Find Full Text PDF

More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired "redox homeostasis," which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications.

View Article and Find Full Text PDF

Polyadenylation signals (PAS) are found in most protein-coding and some non-coding genes in eukaryotes. Their accurate recognition improves understanding gene regulation mechanisms and recognition of the 3'-end of transcribed gene regions where premature or alternate transcription ends may lead to various diseases. Although different methods and tools for in-silico prediction of genomic signals have been proposed, the correct identification of PAS in genomic DNA remains challenging due to a vast number of non-relevant hexamers identical to PAS hexamers.

View Article and Find Full Text PDF

ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential.

View Article and Find Full Text PDF

Chemotherapy resistance is responsible for high mortality rates in neuroblastoma. MYCN, an oncogenic driver in neuroblastoma, controls pluripotency genes including LIN28B. We hypothesized that enhanced embryonic stem cell (ESC) gene regulatory programs could mark tumors with high pluripotency capacity and subsequently increased risk for therapy failure.

View Article and Find Full Text PDF

Chromosome 17q gains are almost invariably present in high-risk neuroblastoma cases. Here, we perform an integrative epigenomics search for dosage-sensitive transcription factors on 17q marked by H3K27ac defined super-enhancers and identify TBX2 as top candidate gene. We show that TBX2 is a constituent of the recently established core regulatory circuitry in neuroblastoma with features of a cell identity transcription factor, driving proliferation through activation of p21-DREAM repressed FOXM1 target genes.

View Article and Find Full Text PDF

During cellular division DNA replicates and this process is the basis for passing genetic information to the next generation. However, the DNA copy process sometimes produces a copy that is not perfect, that is, one with mutations. The collection of all such mutations in the DNA copy of an organism makes it unique and determines the organism's phenotype.

View Article and Find Full Text PDF

Epigenetic changes can be studied with an untargeted characterization of histone post-translational modifications (PTMs) by liquid chromatography-mass spectrometry (LC-MS). While prior information about more than 20 types of histone PTMs exists, little is known about histone PTM combinations (PTMCs). Because of the combinatorial explosion it is intrinsically impossible to consider all potential PTMCs in a database search.

View Article and Find Full Text PDF

Purpose: Currently, it is unclear to what extent sampling procedures affect the epigenome. Here, this phenomenon was evaluated by studying the impact of artery ligation on DNA methylation in clear cell renal cancer.

Methods: DNA methylation profiles between vascularised tumour biopsy samples and devascularised nephrectomy samples from two individuals were compared.

View Article and Find Full Text PDF

Background: Genetic intratumoral heterogeneity (ITH) hinders biomarker development in metastatic clear cell renal cancer (mccRCC). Epigenetic relative to genetic ITH or the presence of consistent epigenetic changes following targeted therapy in mccRCC have not been evaluated. The aim of this study was to determine methylome/genetic ITH and to evaluate specific epigenetic and genetic changes associated with sunitinib therapy.

View Article and Find Full Text PDF

It is difficult to predict if and when massively parallel sequencing of forensic STR loci will replace capillary electrophoresis as the new standard technology in forensic genetics. The main benefits of sequencing are increased multiplexing scales and SNP detection. There is not yet a consensus on how sequenced profiles should be reported.

View Article and Find Full Text PDF