Internet of Things (IoT) has emerged as a cutting-edge technology that is changing human life. The rapid and widespread applications of IoT, however, make cyberspace more vulnerable, especially to IoT-based attacks in which IoT devices are used to launch attack on cyber-physical systems. Given a massive number of IoT devices (in order of billions), detecting and preventing these IoT-based attacks are critical.
View Article and Find Full Text PDFThis paper proposes latent representation models for improving network anomaly detection. Well-known anomaly detection algorithms often suffer from challenges posed by network data, such as high dimension and sparsity, and a lack of anomaly data for training, model selection, and hyperparameter tuning. Our approach is to introduce new regularizers to a classical autoencoder (AE) and a variational AE, which force normal data into a very tight area centered at the origin in the nonsaturating area of the bottleneck unit activations.
View Article and Find Full Text PDF