Publications by authors named "Van Duc Dang"

Memory B cells (mBCs) are characterized by their long-term stability, fast reactivation, and capability to rapidly differentiate into antibody-secreting cells (ASCs). However, the role of T cells in the differentiation of mBCs, in contrast to naive B cells, remains to be delineated. We study the role of T cells in mBC responses, using CD40L stimulation and autologous T-B co-cultures.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how interferon (IFN) signaling pathways affect autoantibody production and symptoms in primary Sjögren's syndrome (pSS), aiming to improve diagnostics and personalized treatments.
  • Researchers analyzed samples from 34 pSS patients and 38 healthy donors, finding elevated IFN pathway molecules like STAT1, STAT2, and IRF9 in most T and B cells from patients, indicating heightened signaling activity.
  • Results suggest that high levels of STAT1 and IRF9 are linked to specific autoimmune features and can serve as biomarkers for disease severity and the presence of extraglandular symptoms in pSS patients.
View Article and Find Full Text PDF

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM).

View Article and Find Full Text PDF

Inflammation conditions are associated with autism spectrum disorder (ASD) and cerebral palsy (CP), primarily observed in the peripheral immune system. However, the extent of neuro-inflammation and neuro-immune dysregulation remains poorly studied. In this study, we analyzed the composition of cerebrospinal fluid (CSF) to uncover the inflammatory mediators driving the neuro-immune system in ASD and CP patients.

View Article and Find Full Text PDF

Human B lymphocytes are attractive targets for immunotherapies in autoantibody-mediated diseases. Gene editing technologies could provide a powerful tool to determine gene regulatory networks regulating B cell differentiation into plasma cells, and identify novel therapeutic targets for prevention and treatment of autoimmune disorders. Here, we describe a new approach that uses CRISPR-Cas9 technology to target genes in primary human B cells for identifying plasma cell regulators.

View Article and Find Full Text PDF

Objective: Altered composition of the B cell compartment in the pathogenesis of systemic lupus erythematosus (SLE) is characterized by expanded plasmablast and IgD-CD27- double-negative B cell populations. Previous studies showed that double-negative B cells represent a heterogeneous subset, and further characterization is needed.

Methods: We analyzed 2 independent cohorts of healthy donors and SLE patients, using a combined approach of flow cytometry (for 16 healthy donors and 28 SLE patients) and mass cytometry (for 18 healthy donors and 24 SLE patients) and targeted RNA-Seq analysis.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered twelve new proteins uniquely found in mouse ASCs, with particular emphasis on CD39, CD81, CD130, and CD326, which are consistent and enhance the identification of these cells.
  • * The study revealed that the expression of these markers is influenced by microbial and T cell signals and highlighted a specific subpopulation of plasma cells in lupus mice that may be linked to autoimmunity.
View Article and Find Full Text PDF

B lymphocytes play a central role in immunity owing to their unique antibody-producing capacity that provides protection against certain infections and during vaccination. In autoimmune diseases, B cells can gain pathogenic relevance through autoantibody production, antigen presentation, and proinflammatory cytokine secretion. Recent data indicate that B and plasma cells can function as regulators through the production of immunoregulatory cytokines and/or employing checkpoint molecules.

View Article and Find Full Text PDF

B cells are primarily known for their capacity to differentiate into antibody-secreting cells (ASCs). ASCs are usually viewed as terminally differentiated cells sharing a unique phenotype. However, it lately became evident that ASCs exist in a variety of subsets differing by their lifespan, anatomic location, and immunological function.

View Article and Find Full Text PDF

Exosomes are nano-scale and closed membrane vesicles which are promising for therapeutic applications due to exosome-enclosed therapeutic molecules such as DNA, small RNAs, proteins and lipids. Recently, it has been demonstrated that mesenchymal stem cell (MSC)-derived exosomes have capacity to regulate many biological events associated with wound healing process, such as cell proliferation, cell migration and blood vessel formation. This study investigated the regenerative potentials for cutaneous tissue, in regard to growth factors associated with wound healing and skin cell proliferation and migration, by exosomes released from primary MSCs originated from bone marrow (BM), adipose tissue (AD), and umbilical cord (UC) under serum- and xeno-free condition.

View Article and Find Full Text PDF

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells.

View Article and Find Full Text PDF

Antibodies are key to cutaneous host defense and inflammation. Despite their importance, the mechanisms by which skin antibodies are sustained are poorly described. Here, we identified that, in addition to antibody production in lymphoid tissues, plasma cells reside in healthy mouse and human skin.

View Article and Find Full Text PDF
Article Synopsis
  • * These plasma cells develop from various B cell types in a way that's dependent on the B cell receptor (BCR) and are able to increase IL-10 production within hours of an immune challenge without needing to divide.
  • * The study suggests that these natural regulatory plasma cells may be important for understanding and potentially intervening in diseases, as they can negatively impact memory T cell formation and the efficacy of vaccines.
View Article and Find Full Text PDF

Clinical trial results demonstrating that B-cell depletion substantially reduces new relapses in patients with multiple sclerosis (MS) have established that B cells play a role in the pathophysiology of MS relapses. The same treatment appears not to impact antibodies directed against the central nervous system, which underscores the contribution of antibody-independent functions of B cells to disease activity. One mechanism by which B cells are now thought to contribute to MS activity is by over-activating T cells, including through aberrant expression of B cell pro-inflammatory cytokines.

View Article and Find Full Text PDF

B cells are usually considered primarily for their unique capacity to produce antibodies after differentiation into plasma cells. In addition to their roles as antibody-producing cells, it has become apparent during the last 10 years that B cells also perform important functions in immunity through the production of cytokines. In particular, it was shown that B cells could negatively regulate immunity through provision of interleukin (IL)-10 during autoimmune and infectious diseases in mice.

View Article and Find Full Text PDF

B lymphocytes have a unique role as antibody-producing cells. Antibodies are key mediators of humoral immunity against infections, and are thought to account for the protection afforded by successful vaccines. B cells can also secrete cytokines and subsequently regulate immune responses mediated by T and innate cells.

View Article and Find Full Text PDF

B-cell depletion can improve disease in some patients with rheumatoid arthritis or multiple sclerosis, indicating the pathogenic contribution of B cells to autoimmunity. However, studies in mice have demonstrated that B cells have immunosuppressive functions as well, with IL-10 being a critical mediator of B-cell-mediated suppression. IL-10-secreting B cells have been shown to promote disease remission in some mouse models of autoimmune disorders.

View Article and Find Full Text PDF

B lymphocytes have critical roles as positive and negative regulators of immunity. Their inhibitory function has been associated primarily with interleukin 10 (IL-10) because B-cell-derived IL-10 can protect against autoimmune disease and increase susceptibility to pathogens. Here we identify IL-35-producing B cells as key players in the negative regulation of immunity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlnd99mp27qooe51153t5qd15dtjnit7b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once