Publications by authors named "Van Dau"

Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein.

View Article and Find Full Text PDF

Strengthening international collaboration is essential to achieving the United Nations' SDGs. The Group of Seven (G7) is recognized for acting and enhancing cooperation to achieve the SDGs. However, the current understanding of G7's cooperation is rather subjective without quantitative measurements.

View Article and Find Full Text PDF

The pursuit of increased efficiency of photoelectric energy conversion through optimized semiconductor structures remains highly competitive, with current results yet to align with broad expectations. In this study, we discover a significant enhancement in photocurrent performance of a p-3C-SiC nanothin film on p-Si/n-Si double junction (DJ) heterostructure that integrates p-3C-SiC/p-Si heterojunction and p-Si/n-Si homojunction. The vertical photocurrent (VPC) and vertical photoresponsivity exhibit a substantial enhancement in the DJ heterostructure, surpassing by a maximum of 43-fold compared to the p-3C-SiC/n-Si single junction (SJ) counterpart.

View Article and Find Full Text PDF

Objectives: To develop and practically test high-precision femtosecond laser ablation models for dental hard tissue that are useful for detailed planning of automated laser dental restorative treatment.

Methods: Analytical models are proposed, derived, and demonstrated for practical calculation of ablation rates, ablation efficiency and ablated morphology of human dental enamel and dentin using femtosecond lasers. The models assume an effective optical attenuation coefficient for the irradiated material.

View Article and Find Full Text PDF

Portable and wearable electronics for biomechanical data collection have become a growing part of everyday life. As smart technology improves and integrates into our lives, some devices remain ineffective, expensive, or difficult to access. We propose a washable iron-on textile pressure sensor for biometric data acquisition.

View Article and Find Full Text PDF

Electrohydrodynamic atomization (EHDA) provides unparalleled control over the size and production rate of particles from solution. However, conventional methods produce highly charged particles that are not appropriate for inhalation drug delivery. We present a self-propelled EHDA system to address this challenge, a promising one-step platform for generating and delivering charge-reduced particles.

View Article and Find Full Text PDF

This paper presents a novel self-powered mechanical sensing based on the vertical piezo-optoelectronic coupling in a 3C-SiC/Si heterojunction. The vertical piezo-optoelectronic coupling refers to the change of photogenerated voltage across the 3C-SiC/Si heterojunction upon application of mechanical stress or strain. The effect is elucidated under different photoexcitation conditions and under varying tensile and compressive strains.

View Article and Find Full Text PDF
Article Synopsis
  • Refractory cardiogenic shock is being treated with veno-arterial extracorporeal membrane oxygenation (V-A ECMO), but there’s no solid evidence showing it improves clinical outcomes.
  • A systematic review of preclinical studies on pulsatile V-A ECMO was conducted, following guidelines to gather data from various databases and focusing on ECMO circuits, blood flow conditions, and outcomes.
  • Out of 45 studies reviewed, the majority examined hemodynamic energy production, but the effects of pulsatile V-A ECMO on heart and brain function, end-organ microcirculation, and inflammation remain unclear and under-researched.
View Article and Find Full Text PDF

Biological drugs (BDs) play an increasingly irreplaceable role in treating various diseases such as cancer, and cardiovascular and neurodegenerative diseases. The market share of BDs is increasingly promising. However, the effectiveness of BDs is currently limited due to challenges in efficient administration and delivery, and issues with stability and degradation.

View Article and Find Full Text PDF

The integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices.

View Article and Find Full Text PDF

A highly versatile, low-cost, and robust tactile sensor capable of acquiring load measurements under static and dynamic modes employing a poly(vinylidene fluoride--trifluoroethylene) [P(VDF-TrFE)] micronanofiber element is presented. The sensor is comprised of three essential layers, a fibrous core P(VDF-TrFE) layer and two Ni/Cu conductive fabric electrode layers, with a total thickness of less than 300 μm. Using an electrospinning process, the core fibers are deposited directly to a soft poly(dimethylsiloxane) (PDMS) fingertip.

View Article and Find Full Text PDF

Utilizing harvesting energy to power sensors has been becoming more critical in the current age of the Internet of Things. In this paper, we propose a novel technology using a monolithic 3C-SiC/Si heterostructure to harvest photon energy to power itself and simultaneously sense the surrounding temperature. The 3C-SiC/Si heterostructure converts photon energy into electrical energy, which is manifested as a lateral photovoltage across the top material layer of the heterostructure.

View Article and Find Full Text PDF

The piezoresistive effect has been a dominant mechanical sensing principle that has been widely employed in a range of sensing applications. This transducing concept still receives great attention because of the huge demand for developing small, low-cost, and high-performance sensing devices. Many researchers have extensively explored new methods to enhance the piezoresistive effect and to make sensors more and more sensitive.

View Article and Find Full Text PDF

It is critical to investigate the charge carrier gradient generation in semiconductor junctions with an asymmetric configuration, which can open a new platform for developing lateral photovoltaic and self-powered devices. This paper reports the generation of a charge carrier gradient in a 3C-SiC/Si heterojunction with an asymmetric electrode configuration. 3C-SiC/Si heterojunction devices with different electrode widths were illuminated by laser beams (wavelengths of 405, 521, and 637 nm) and a halogen bulb.

View Article and Find Full Text PDF

Giant piezoresistive effect enables the development of ultrasensitive sensing devices to address the increasing demands from hi-tech applications such as space exploration and self-driving cars. The discovery of the giant piezoresistive effect by optoelectronic coupling leads to a new strategy for enhancing the sensitivity of mechanical sensors, particularly with light from light-emitting diodes (LEDs). This paper reports on the piezoresistive effect in a 3C-SiC/Si heterostructure with a bonded LED that can reach a gauge factor (GF) as high as 18 000.

View Article and Find Full Text PDF

Electrohydrodynamic atomization has been emerging as a powerful approach for respiratory treatment, including the generation and delivery of micro/nanoparticles as carriers for drugs and antigens. In this work, we present a new conceptual design in which two nozzles facilitate dual electrospray coexisting with ionic wind at chamfered tips by a direct current power source. Experimental results by a prototype have demonstrated the capability of simultaneously generating-and-delivering a stream of charged reduced particles.

View Article and Find Full Text PDF

With its unprecedented properties over conventional rigid platforms, flexible electronics have been a significant research topic in the last decade, offering a broad range of applications from bendable display, flexible solar-energy systems, to soft implantable-devices for health monitoring. Flexible electronics for harsh and hazardous environments have also been extensively investigated. In particular, devices with stretchability and bend-ability as well as tolerance to extreme and toxic operating conditions are imperative.

View Article and Find Full Text PDF

Stretchable and wearable sensor technology has attracted significant interests and created high technological impact on portable healthcare and smart human-machine interfaces. Wearable electromechanical systems are an important part of this technology that has recently witnessed tremendous progress toward high-performance devices for commercialization. Over the past few years, great attention has been paid to simultaneously enhance the sensitivity and stretchability of the electromechanical sensors toward high sensitivity, ultra-stretchability, low power consumption or self-power functionalities, miniaturisation as well as simplicity in design and fabrication.

View Article and Find Full Text PDF

The development of electronic skin (e-skin) and soft tactile sensing has recently attracted great interest. Here we report for the first time on a novel ionic liquid (IL) based soft pressure sensor with multi-point touch detection capability using 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF]) as a highly conductive sensing medium. The sensing mechanism is attributed to the repopulation of charge cations and anions in aqueous solution under pressure.

View Article and Find Full Text PDF

A flexible pressure sensor with a rudimentary, ultra-low cost, and solvent-free fabrication process is presented in this paper. The sensor has a graphite-on-paper stacked paper structure, which deforms and restores its shape when pressure is applied and released, showing an exceptionally fast response and relaxation time of ≈0.4 ms with a sensitivity of -5%/Pa.

View Article and Find Full Text PDF

A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively.

View Article and Find Full Text PDF

In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result.

View Article and Find Full Text PDF

Using various chromatographic methods, one new sesquiterpene quinone named smenohaimien F (1) and five known, neodactyloquinone (2), dactyloquinone C (3), dactyloquinone D (4), isoamijiol (5), and amijiol (6), were isolated from the marine sponge Smenospongia cerebriformis Duchassaing & Michelotti, 1864. Their structures were elucidated by ID-, 2D-NMR spectroscopic analysis, HR-ESI-MS, and by comparing with the NMR data reported in the literature. The cytotoxic activities of the all compounds were evaluated on five human cancer cell lines, LU-1, HL-60, SK-Mel-2, HepG-2, and MCF-7.

View Article and Find Full Text PDF

With the aim of designing a mechanical drug delivery system involving a bio-actuator, we fabricated a Micro Electro Mechanical Systems (MEMS) device that can be driven through contraction of skeletal muscle cells. The device is composed of a Si-MEMS with springs and ratchets, UV-crosslinked collagen film for cell attachment, and C2C12 muscle cells. The Si-MEMS device is 600 μm x 1000 μm in size and the width of the collagen film is 250 ~ 350 μm, which may allow the device to go through small blood vessels.

View Article and Find Full Text PDF

Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets.

View Article and Find Full Text PDF