TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1.
View Article and Find Full Text PDFFerritin-like proteins, Dps (DNA-binding protein from starved cells), store iron and play a key role in the iron homeostasis in bacteria, yet their iron releasing machinery remains largely unexplored. The electron donor proteins that may interact with Dps and promote the mobilization of the stored iron have hitherto not been identified. Here, we investigate the binding capacity of the two atypical Dps proteins NpDps4 and NpDps5 from Nostoc punctiforme to isolated ferredoxins.
View Article and Find Full Text PDFDps proteins (DNA-binding proteins from starved cells) have been found to detoxify H2O2. At their catalytic centers, the ferroxidase center (FOC), Dps proteins utilize Fe2+ to reduce H2O2 and therefore play an essential role in the protection against oxidative stress and maintaining iron homeostasis. Whereas most bacteria accommodate one or two Dps, there are five different Dps proteins in Nostoc punctiforme, a phototrophic and filamentous cyanobacterium.
View Article and Find Full Text PDFCyanobacteria are photosynthetic prokaryotes that are considered biotechnologically prominent organisms for production of high-value compounds. Cyanobacteria are subject to high-light intensities, which is a challenge that needs to be addressed in design of efficient bio-engineered photosynthetic organisms. Dps proteins are members of the ferritin superfamily and are omnipresent in prokaryotes.
View Article and Find Full Text PDFCyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria.
View Article and Find Full Text PDFNADH:quinone oxidoreductase or complex I is a large membrane bound enzyme complex that has evolved from the combination of smaller functional building blocks. Intermediate size enzyme complexes exist in nature that comprise some, but not all of the protein subunits in full size 14-subunit complex I. The membrane spanning complex I subunits NuoL, NuoM and NuoN are homologous to each other and to two proteins from one particular class of Na(+)/H(+) antiporters, denoted MrpA and MrpD.
View Article and Find Full Text PDFMrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmembrane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was investigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I.
View Article and Find Full Text PDFThe NADH:quinone oxidoreductase (complex I) has evolved from a combination of smaller functional building blocks. Chloroplasts and cyanobacteria contain a complex I-like enzyme having only 11 subunits. This enzyme lacks the N-module which harbors the NADH binding site and the flavin and iron-sulfur cluster prosthetic groups.
View Article and Find Full Text PDFThe complex I subunits NuoL, NuoM and NuoN are homologous to two proteins, MrpA and MrpD, from one particular class of Na+/H+ antiporters. In many bacteria MrpA and MrpD are encoded by an operon comprising 6-7 conserved genes. In complex I these protein subunits are prime candidates for harboring important parts of the proton pumping machinery.
View Article and Find Full Text PDFOverproduction of membrane proteins can be a cumbersome task, particularly if high yields are desirable. NADH:quinone oxidoreductase (Complex I) contains several very large membrane-spanning protein subunits that hitherto have been impossible to express individually in any appreciable amounts in Escherichia coli. The polypeptides contain no prosthetic groups and are poorly antigenic, making optimization of protein production a challenging task.
View Article and Find Full Text PDFAquaporins facilitate water transport over cellular membranes, and are therefore believed to play an important role in water homeostasis. In higher plants aquaporin-like proteins, also called major intrinsic proteins (MIPs), are divided into five subfamilies. We have previously shown that MIP transcription in Arabidopsis thaliana is generally downregulated in leaves upon drought stress, apart from two members of the plasma membrane intrinsic protein (PIP) subfamily, AtPIP1;4 and AtPIP2;5, which are upregulated.
View Article and Find Full Text PDF