Publications by authors named "Valvin P"

Although large efforts have been made to improve the growth of hexagonal boron nitride (hBN) by heteroepitaxy, the non-native substrates remain a fundamental factor that limits the quality. This problem can be solved by homoepitaxy, which is the growth of hBN on hBN substrates. In this report, we demonstrate the homoepitaxial growth of triangular BN grains on exfoliated hBN flakes by Metal-Organic Vapor Phase Epitaxy and show by atomic force microscopy and photoluminescence that the stacking of these triangular islands can deviate from the AA' stacking of hBN.

View Article and Find Full Text PDF

Cathodoluminescence (CL) spectroscopy is a suitable technique for studying the luminescent properties of optoelectronic materials because CL has no limitation on the excitable bandgap energy and eliminates ambiguous signals due to simple light scattering and resonant Raman scattering potentially involved in the photoluminescence spectra. However, direct CL measurements of atomically thin two-dimensional materials have been difficult due to the small excitation volume that interacts with high-energy electron beams. Herein, distinct CL signals from a monolayer hexagonal BN (hBN), namely mBN, epitaxial film grown on a graphite substrate are shown by using a CL system capable of large-area and surface-sensitive excitation.

View Article and Find Full Text PDF

The unique physical, mechanical, chemical, optical, and electronic properties of hexagonal boron nitride (hBN) make it a promising 2D material for electronic, optoelectronic, nanophotonic, and quantum devices. Here, the changes in hBN's properties induced by isotopic purification in both boron and nitrogen are reported. Previous studies on isotopically pure hBN have focused on purifying the boron isotope concentration in hBN from its natural concentration (≈20 at% B, 80 at% B) while using naturally abundant nitrogen (99.

View Article and Find Full Text PDF

The presence of metastable Bernal stacking boron nitride is verified by combining second harmonic generation (SHG) and photoluminescence (PL) spectroscopy. The scanning confocal cryomicroscope, operating in the deep-ultraviolet range, shows a one-to-one correlation between inversion symmetry breaking probed by SHG and the detection of an intense PL line at ∼6.035 eV, the specific signature of the noncentrosymmetric Bernal stacking.

View Article and Find Full Text PDF

Dispersionless energy bands in k space are a peculiar property gathering increasing attention for the emergence of novel electronic, magnetic, and photonic properties. Here, we explore the impact of electronic flat bands on the light-matter interaction. The van der Waals interaction between the atomic layers of hexagonal boron nitride induces flat bands along specific lines of the Brillouin zone.

View Article and Find Full Text PDF

The optical response of 2D materials and their heterostructures is the subject of intense research with advanced investigation of the luminescence properties in devices made of exfoliated flakes of few- down to one-monolayer thickness. Despite its prevalence in 2D materials research, hexagonal boron nitride (hBN) remains unexplored in this ultimate regime because of its ultrawide bandgap of about 6 eV and the technical difficulties related to performing microscopy in the deep-ultraviolet domain. Here, we report hyperspectral imaging at wavelengths around 200 nm in exfoliated hBN at low temperature.

View Article and Find Full Text PDF

The highest quality hexagonal boron nitride (hBN) crystals are grown from molten solutions. For hBN crystal growth at atmospheric pressure, typically the solvent is a combination of two metals, one with a high boron solubility and the other to promote nitrogen solubility. In this study, we demonstrate that high-quality hBN crystals can be grown at atmospheric pressure using pure iron as a flux.

View Article and Find Full Text PDF

Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not confirmed experimentally.

View Article and Find Full Text PDF

We investigate the optical properties of porous GaN films of different porosities, focusing on the behaviors of the excitonic features in time-integrated and time-resolved photoluminescence. A substantial enhancement of both excitonic emission intensity and recombination rate, along with insignificant intensity weakening under temperature rise, is observed in the porous GaN films. These observations are in line with (i) the local concentration of electric field at GaN nanoparticles and pores due to the depolarization effect, (ii) the efficient light extraction from the nanoparticles.

View Article and Find Full Text PDF

Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (B and B) compared to those with the natural distribution of boron (20 at% B and 80 at% B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization.

View Article and Find Full Text PDF

We report on the ultraviolet optical response of a color center in hexagonal boron nitride. We demonstrate a mapping between the vibronic spectrum of the color center and the phonon dispersion in hexagonal boron nitride, with a striking suppression of the phonon assisted emission signal at the energy of the phonon gap. By means of nonperturbative calculations of the electron-phonon interaction in a strongly anisotropic phonon dispersion, we reach a quantitative interpretation of the acoustic phonon sidebands from cryogenic temperatures up to room temperature.

View Article and Find Full Text PDF

Deep ultra-violet semiconductor lasers have numerous applications for optical storage and biochemistry. Many strategies based on nitride heterostructures and adapted substrates have been investigated to develop efficient active layers in this spectral range, starting with AlGaN quantum wells on AlN substrates and more recently sapphire and SiC substrates. Here we report an efficient and simple solution relying on binary GaN/AlN quantum wells grown on a thin AlN buffer layer on a silicon substrate.

View Article and Find Full Text PDF