Publications by authors named "Valter Maurino"

The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Since both size and shape of nanoparticles are challenging to be quantitatively measured, traceable 3D measurements are nowadays an issue. 3D nanometrology plays a crucial role to reduce the uncertainty of measurements, improve traceable calibration of samples and implement new approaches, models, and methodologies in the study of the nanomaterials. AFM measurement of nanoparticles with unusual shape represent a non-trivial challenge due to the convolution with the finite size of the tip.

View Article and Find Full Text PDF

In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano-bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging.

View Article and Find Full Text PDF

In the present work a series of design rules are developed in order to tune the morphology of TiO nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio.

View Article and Find Full Text PDF

Benzotriazoles are a new class of organic emerging pollutants ubiquitously found in the environment. The increase of their concentration to detectable values is the consequence of the inability of the Conventional Waste Water Plants (CWWPs) to abate these products. We subjected 1H-benzotriazole (BTz), tolyltriazole (TTz), and Tinuvin P (TP, a common UV plastic stabilizer) to photocatalytic degradation under UV-irradiated TiO in different conditions.

View Article and Find Full Text PDF

Anatase nanoparticles in suspension have demonstrated high photoactivity that can be exploited for pollutant removal in water phases. The main drawback of this system is the difficulty of recovering (and eventually reusing) the nanoparticles after their use, and the possible interference of inorganic salts (e.g.

View Article and Find Full Text PDF

The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO-NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO-NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • This study uses transient absorption spectroscopy and steady-state irradiation to explore how phenol and furfuryl alcohol (FFA) are transformed when sensitized by irradiated 4-carboxybenzophenone (CBBP), which mimics natural water organic matter.
  • The main reactive species responsible for the transformation is the triplet state of CBBP, although FFA is known for being a probe for singlet oxygen (1O2).
  • A simple kinetic model successfully describes FFA's behavior under steady-state irradiation, while a more complex model is needed for phenol due to possible back reactions, with a recommendation to avoid using 1O2 scavengers like sodium azide in these experiments.
View Article and Find Full Text PDF

The secondary pollutant 3,4-dichloroaniline (DCA) is produced by the biological degradation of several herbicides, including propanil in paddy fields. The enzymatic hydrolysis of propanil yields DCA with almost quantitative yield. DCA undergoes rather fast photodegradation in paddy water, mostly by direct photolysis.

View Article and Find Full Text PDF

By use of photochemical modelling we show that acesulfame K (ACE) can undergo photodegradation in surface waters, mainly by reaction with OH and possibly CDOM* (the triplet states of chromophoric dissolved organic matter). With the possible exception of shallow water bodies containing low dissolved organic carbon, we predict ACE to be a refractory compound in environmental waters which agrees well with many literature reports. We used two methods to measure the photoreactivity parameters of ACE, of which one is based on the monitoring of the time evolution of ACE alone and the other is based on the monitoring of both ACE and a reference compound (hereafter, they are referred to as substrate-only and substrate + reference method, respectively).

View Article and Find Full Text PDF

Irradiated nitrophenols can produce nitrite and nitrous acid (HONO) in bulk aqueous solutions and in viscous aqueous films, simulating the conditions of a high-solute-strength aqueous aerosol, with comparable quantum yields in solution and viscous films (10-10 in the case of 4-nitrophenol) and overall reaction yields up to 0.3 in solution. The process is particularly important for the para-nitrophenols, possibly because their less sterically hindered nitro groups can be released more easily as nitrite and HONO.

View Article and Find Full Text PDF

Gemfibrozil (GFZ) is a relatively persistent pollutant in surface-water environments and it is rather recalcitrant to biological degradation. The GFZ photochemical lifetimes are relatively short in shallow waters with low levels of dissolved organic carbon (DOC), but they can reach the month-year range in deep and high-DOC waters. The main reason is that GFZ undergoes negligible reaction with singlet oxygen or degradation sensitised by the triplet states of chromophoric dissolved organic matter, which are the usually prevalent photochemical pathways in deep and high-DOC sunlit waters.

View Article and Find Full Text PDF

Phototransformation is important for the fate in surface waters of the pharmaceuticals diclofenac (DIC) and naproxen (NAP) and for clofibric acid (CLO), a metabolite of the drug clofibrate. The goal of this paper is to provide an overview of the prevailing photochemical processes, which these compounds undergo in the different conditions found in freshwater environments. The modelled photochemical half-life times of NAP and DIC range from a few days to some months, depending on water conditions (chemistry and depth) and on the season.

View Article and Find Full Text PDF

The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically.

View Article and Find Full Text PDF

A work on the characterization of the air quality in the city of Turin was carried out in different sampling periods, reflecting early autumn and winter conditions, including a snow episode during the early 2012 European cold wave. The concentrations of 13 elements in eight size fractions of the aerosol were determined using inductively coupled plasma-mass spectrometry. The collection was carried out with a Andersen MkII cascade impactor.

View Article and Find Full Text PDF

The singlet and triplet excited states of 4-hydroxybenzophenone (4BPOH) undergo deprotonation in the presence of water to produce the anionic ground-state, causing fluorescence quenching and photoactivity inhibition. The same process does not take place in an aprotic solvent such as acetonitrile. In acetonitrile, 4BPOH is fluorescent (interestingly, one of its fluorescence peaks overlaps with peak C of humic substances), it yields singlet oxygen upon irradiation and induces the triplet-sensitised transformation of phenol (with a rate constant of (6.

View Article and Find Full Text PDF

The aim of this study was the evaluation of the binding performances and selectivity of molecularly imprinted beads prepared toward several penicillins (i) by hierarchical bulk polymerization in the pores of template-grafted silica microbeads (hMIPs) and (ii) by Pickering emulsion polymerization in the presence of template-decorated silica nanobeads (pMIPs). 6-Aminopenicillanic acid was chosen as the common fragmental mimic template. Both approaches produced micron-sized polymeric beads with good recognition properties toward the target ligands whereas the selectivity pattern appeared quite different.

View Article and Find Full Text PDF

The direct and indirect photodegradation of six cephalosporins was predicted using a photochemical model, on the basis of literature values of photochemical reactivity. Environmental photodegradation would be important in surface water bodies with depth ⩽ 2-3m, and/or in deeper waters with low values of the dissolved organic carbon (DOC ⩽ 1 mg C L(-1)). The half-life times would range from a few days to a couple of weeks in summertime.

View Article and Find Full Text PDF

Lake circulation is an important phenomenon that ensures oxygenation of the water column. Here we report that aeration of anoxic hypolimnion water causes production of highly reactive hydroxyl radicals (·OH), which are also produced photochemically in the epilimnion. Model calculations suggest that the dark process of ·OH generation can be comparable with photochemical reactions in some lake environments, provided that the hypolimnion is a significant fraction of the whole lake volume.

View Article and Find Full Text PDF

Chromophoric dissolved organic matter (CDOM) in surface waters is a photochemical source of several transient species such as CDOM triplet states ((3)CDOM*), singlet oxygen ((1)O2) and the hydroxyl radical (OH). By irradiation of lake water samples, it is shown here that the quantum yields for the formation of these transients by CDOM vary depending on the irradiation wavelength range, in the order UVB > UVA > blue. A possible explanation is that radiation at longer wavelengths is preferentially absorbed by the larger CDOM fractions, which show lesser photoactivity compared to smaller CDOM moieties.

View Article and Find Full Text PDF

We show that phenol can be effectively degraded by magnetite in the presence of persulfate (S2O8(2–)) under UVA irradiation. The process involves the radical SO4(–•), formed from S2O8(2–) in the presence of Fe(II). Although magnetite naturally contains Fe(II), the air-exposed oxide surface is fully oxidized to Fe(III) and irradiation is required to produce Fe(II).

View Article and Find Full Text PDF

Dimethomorph (DMM) is a widely used fungicide that shows low toxicity for birds and mammals but can be quite toxic to aquatic organisms. The persistence of DMM in surface waters is thus of high importance, and this work modelled its water half-life time due to photochemical processes. Depending on environmental conditions (e.

View Article and Find Full Text PDF

Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a widely used antimicrobial agent that undergoes fairly slow biodegradation. It is often found in surface waters in both the acidic (HTric) and basic (Tric(-)) forms (pKa ∼8), and it can undergo direct photodegradation to produce several intermediates including a dioxin congener (2,8-dichlorodibenzodioxin, hereafter 28DCDD). The latter is formed from Tric(-) and causes non-negligible environmental concern.

View Article and Find Full Text PDF

This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions.

View Article and Find Full Text PDF