Detection of pathogenic microorganisms is essential for food quality control and diagnosis of various diseases, which is currently performed with high-cost, sophisticated methods. In this paper, we report on a low-cost detection method based on impedance spectroscopy to detect Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFThis paper reports on biosensors made with a matrix of polylactic acid (PLA) fibers, which are suitable for immobilization of the anti-p53 active layer for detection of p53 biomarker. The PLA fibers were produced with solution blow spinning, a method that is advantageous for its simplicity and possibility to tune the fiber properties. For the biosensors, the optimized time to deposit the fibers was 60 s, with which detection of p53 could be achieved with the limit of detection of 11 pg/mL using electrical impedance spectroscopy.
View Article and Find Full Text PDFDiagnosis of prostate cancer via PCA3 biomarker detection is promising to be much more efficient than with the prostatic specific antigens currently used. In this study, we present the first electrochemical and impedance-based biosensors that are capable of detecting PCA3 down to 0.128 nmol/L.
View Article and Find Full Text PDFHigh-risk human papillomavirus (HPV) infection, mainly with HPV16 type, has been increasingly considered as an important etiologic factor in head and neck cancers. Detection of HPV16 is therefore crucial for these types of cancer, but clinical tests are not performed routinely in public health systems owing to the high cost and limitations of the existing tests. In this article, we report on a potentially low-cost genosensor capable of detecting low concentrations of HPV16 in buffer samples and distinguishing, with high accuracy, head and neck cancer cell lines according to their HPV16 status.
View Article and Find Full Text PDFWe report the fabrication of immunosensors based on nanostructured mats of electrospun nanofibers of polyamide 6 and poly(allylamine hydrochloride) coated either with multiwalled carbon nanotubes (MWCNTs) or gold nanoparticles (AuNPs), whose three-dimensional structure was suitable for the immobilization of anti-CA19-9 antibodies to detect the pancreatic cancer biomarker CA19-9. Using impedance spectroscopy, the sensing platform was able to detect CA19-9 with a detection limit of 1.84 and 1.
View Article and Find Full Text PDFIn this paper, we show that chitosan may induce conformation changes in silk fibroin (SF) in layer-by-layer (LbL) films, which were used as matrix for immobilization of the enzyme phytase to detect phytic acid. Three chitosan (CH) samples possessing distinct molecular weights were used to build CH/SF LbL films, and a larger change in conformation from random coils to β-sheets for SF was observed for high molecular weight chitosan (CHH). The CHH/SF LbL films deposited onto interdigitated gold electrodes were coated with a layer of phytase, with which phytic acid could be detected down to 10M using impedance spectroscopy as the principle of detection and treating the data with a multidimensional projection technique.
View Article and Find Full Text PDFIn this work we developed an immunosensor for HIV-1 diagnostics that exploits the biorecognition between the antibody anti-p24 and the antigenic peptide p24-3 (AMATLRAEQASQEVKNWMTETL- LVQNA) derived from the HIV-1 p24 protein. p24-3 was encapsulated in phospholipid liposomes and immobilized in layer-by-layer (LbL) films produced with polyethyleneimine (PEI). The incorporation of p24-3 into liposomes was investigated using circular dichroism (CD) spectroscopy, from which an increase in the alpha helix conformation could be noted.
View Article and Find Full Text PDF