Objective: Major depressive disorder (MDD) is heterogeneous. While transcranial direct current stimulation (tDCS) is an effective treatment, its impact on symptoms remains underexplored. This ancillary study investigated home-use tDCS effects on depression symptom clusters.
View Article and Find Full Text PDFBackground And Objectives: The activity profile of the posterior insula in neuropathic pain (NeP) remains largely unexplored. To address this and examine its modulation by somatosensory stimulation, we recorded local field potentials (LFP) in awake patients with NeP undergoing deep brain stimulation (DBS) electrode implantation to the posterior-superior insula (PSI) for analgesic purposes.
Materials And Methods: Six patients (one woman; 32-45 years), experiencing refractory peripheral NeP and having previously responded to non-invasive stimulation of the PSI underwent stereotactic implantation of DBS electrodes to the PSI as part of a phase II clinical trial.
Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.
View Article and Find Full Text PDFIn this randomized, double-blind, parallel placebo-controlled clinical trial, we evaluated the efficacy of methadone as an add-on therapy for people with chronic neuropathic pain (NP). Eighty-six patients were randomly assigned to receive methadone or placebo for 8 weeks. The primary outcome was the proportion of participants achieving at least 30% pain relief from baseline using a 100-mm pain Visual Analogue Scale.
View Article and Find Full Text PDFNeurophysiol Clin
September 2024
Objectives: Altered somatosensory processing in the posterior insula may play a role in chronic pain development and contribute to Parkinson disease (PD)-related pain. Posterior-superior insula (PSI) repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to have analgesic effects among patients with some chronic pain conditions. This study aimed at assessing the efficacy of PSI-rTMS for treating PD-related pain.
View Article and Find Full Text PDFObjectives: Central neuropathic pain (CNP) is associated with altered corticomotor excitability (CE), which can potentially provide insights into its mechanisms. The objective of this study is to describe the CE changes that are specifically related to CNP.
Methods: We evaluated CNP associated with brain injury after stroke or spinal cord injury (SCI) due to neuromyelitis optica through a battery of CE measurements and comprehensive pain, neurological, functional, and quality of life assessments.
Central post-stroke pain affects up to 12% of stroke survivors and is notoriously refractory to treatment. However, stroke patients often suffer from other types of pain of non-neuropathic nature (musculoskeletal, inflammatory, complex regional) and no head-to-head comparison of their respective clinical and somatosensory profiles has been performed so far. We compared 39 patients with definite central neuropathic post-stroke pain with two matched control groups: 32 patients with exclusively non-neuropathic pain developed after stroke and 31 stroke patients not complaining of pain.
View Article and Find Full Text PDFNeurophysiol Clin
April 2022
Objectives: The posterior-superior insula (PSI) has been shown to be a safe and potentially effective target for neuromodulation in peripheral neuropathic pain (PNP) in humans and animal models. However, it remains unknown whether there is a measurable responder profile to PSI stimulation. Two factors were hypothesized to influence the response of repetitive transcranial magnetic stimulation (rTMS) of the PSI: differences in rTMS target (discrete subregions of the PSI) or PNP phenotype.
View Article and Find Full Text PDFDeep brain stimulation (DBS) is a treatment option for refractory dystonia's motor symptoms, while its non-motor symptoms (NMS) have been less systematically assessed. We aimed to describe the effects of DBS on NMS in refractory generalized inherited/idiopathic dystonia prospectively. We evaluated patients before and 1 year after DBS surgery and applied the following scales: Burke-Fahn-Marsden Rating Scale (BFMRS), NMS Scale for Parkinson's Disease (NMSS-PD), Parkinson's Disease Questionnaire-8, short-form Brief Pain Inventory (BPI), Neuropathic Pain Symptom Inventory (NPSI), and short-form McGill Pain Questionnaire (MPQ).
View Article and Find Full Text PDFBackground: Unlike motor symptoms, the effects of deep brain stimulation (DBS) on non-motor symptoms associated with dystonia remain unknown.
Methods: The objective of this study was to assess the effects of DBS on evoked experimental pain and cutaneous sensory thresholds in a crossover, double-blind on/off study and compare these results with those of healthy volunteers (HV).
Results: Sixteen patients with idiopathic dystonia (39.
BMC Neurol
December 2019