Unlabelled: Human organs are structurally and functionally complex systems. Their function is driven by the interactions between many specialised cell types, which is difficult to unravel on a standard Petri dish format. Conventional "Petri dish" approaches to culturing cells are static and self-limiting.
View Article and Find Full Text PDFUnderstanding how organisms respond to trace elements is important because some are essential for normal bodily homeostasis, but can additionally be toxic at high concentrations. The inflection point for many of these elements is unknown and requires sensitive techniques capable of detecting subtle cellular changes as well as cytotoxic alterations. In this study, we treated human cells with arsenic (As), copper or selenium (Se) in a dose-response manner and used attenuated total reflection Fourier-transform infrared (ATR-FTIR) microspectroscopy combined with computational analysis to examine cellular alterations.
View Article and Find Full Text PDFChemical contamination of ecosystems is a global issue with evidence that pollutants impact on living organisms in a harmful fashion. Developing sensor approaches that would allow the derivation of biomarkers or signatures of effect in target sentinel organisms and monitor environmental chemical contamination in a high throughput manner is of utmost importance. As biomolecules absorb infrared (IR), signature vibrational spectra related to structure and function can be derived.
View Article and Find Full Text PDF