Publications by authors named "Valley G"

Photonic reservoir computers (RC) come in single mode ring and multimode array geometries. We propose and simulate a photonic RC architecture using speckle in a multimode waveguide ring resonator that requires neither the ultra-high-speed analog-digital conversion nor the spatial light modulator used in other designs. We show that the equations for propagation around a multimode (MM) ring resonator along with an optical nonlinearity, and optical feedback can be cast exactly in the standard RC form with speckle mixing performing the pseudo-random matrix multiplications.

View Article and Find Full Text PDF

A photonic integrated circuit (PIC) comprised of an 11 cm long multimode speckle waveguide, a 1 × 32 splitter, and a linear grating coupler array is fabricated and utilized to receive 2 GHz of radio-frequency (RF) signal bandwidth from 2.5 to 4.5 GHz using compressive sensing (CS).

View Article and Find Full Text PDF

Reservoir computing is a recurrent machine learning framework that expands the dimensionality of a problem by mapping an input signal into a higher-dimension reservoir space that can capture and predict features of complex, non-linear temporal dynamics. Here, we report on a bulk electro-optical demonstration of a reservoir computer using speckles generated by propagating a laser beam modulated with a spatial light modulator through a multimode waveguide. We demonstrate that the hardware can successfully perform a multivariate audio classification task performed using the Japanese vowel speakers public data set.

View Article and Find Full Text PDF

We demonstrate measurement of RF signals in the 2-19 GHz band using a photonic compressive sensing (CS) receiver. The RF is modulated onto chirped optical pulses that then propagate through a multimode fiber that produces the random projections needed for CS via optical speckle. Our system makes 16 independent measurements per optical pulse and we demonstrate several calibration techniques to obtain the CS measurement matrix from these measurements.

View Article and Find Full Text PDF

Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS.

View Article and Find Full Text PDF

We demonstrate an optical mixing system for measuring properties of sparse radio frequency (RF) signals using compressive sensing (CS). Two types of sparse RF signals are investigated: (1) a signal that consists of a few 0.4 ns pulses in a 26.

View Article and Find Full Text PDF

A time-gated filter is demonstrated that converts a double-sideband radio-frequency (rf) waveform on a pulsed optically chirped carrier into a single sideband (SSB) waveform. Electrical technology to produce SSB modulation is currently limited to rfs less than 20 GHz, while our filter operates up to the maximum frequency available from optical modulators. Application of the filter in photonic time-stretch analog-to-digital converters (TS-ADCs) mitigates severe frequency fading owing to the dispersion penalty that limits the rf input signal bandwidth and time aperture.

View Article and Find Full Text PDF

Spectral phase ripple associated with novel dispersive devices can distort broadband optical signals. We present a digital postprocessing algorithm to correct for this distortion by exploiting the static deterministic nature of the ripple. This algorithm is demonstrated with empirical data for several systems employing chirped fiber Bragg gratings (CFBGs).

View Article and Find Full Text PDF

This paper reviews over 30 years of work on photonic analog-to-digital converters. The review is limited to systems in which the input is a radio-frequency (RF) signal in the electronic domain and the output is a digital version of that signal also in the electronic domain, and thus the review excludes photonic systems directed towards digitizing images or optical communication signals. The state of the art in electronic ADCs, basic properties of ADCs and properties of analog optical links, which are found in many photonic ADCs, are reviewed as background information for understanding photonic ADCs.

View Article and Find Full Text PDF

We report the observation of planar Y-junction waveguide splitters that are due to the bulk photovoltaic effect. The junctions are generated by multiple dark-soliton propagation in LiNbO(3) by use of low power levels (20 mW) and average intensities of 10 W/cm(2) at 488 nm. The junctions persist in the dark and can be used to divide input beams of less photorefractive sensitivity.

View Article and Find Full Text PDF

We present an experimental study of steady-state dark photorefractive screening solitons trapped in a bulk strontium barium niobate crystal. We compare experimental measurements with theoretical calculations of the soliton properties and find good agreement between theory and experiments. We confirm the shapepreserving behavior of the dark soliton by measuring its beam profile as it propagates throughout a specially cut crystal and by guiding a beam of a different wavelength.

View Article and Find Full Text PDF

We study experimentally steady-state photorefractive screening solitons trapped in both transverse dimensionsand measure their beam profiles as they propagate throughout the crystal. The solitons are observed to be axially symmetric, and they self-bend. We characterize the soliton dependence on the optical intensity, appliedelectric-field strength, and beam diameter.

View Article and Find Full Text PDF

We present an experimental study of the behavior of photorefractive double phase-conjugate mirrors that illustrates recent theoretical predictions. We observe a sharp fidelity threshold that significantly depends on the specific feature size in the input beams. Furthermore, we find that if the two input beams have unequal intensities the conjugation process is asymmetric and the steady-state fidelity is better on the side of the crystal on which the more-intense beam enters.

View Article and Find Full Text PDF

We present wave-optics calculations of the temporal and spatial evolution from random noise of a double phase-conjugate mirror in photorefractive media that show its image exchange and phase-reversal properties. The calculations show that for values of coupling coefficient times length greater than two the process exhibits excellent conjugation fidelity, behaves as an oscillator, and continues to operate even when the noise required for starting it is set to zero. For values less than two, the double phase-conjugation process exhibits poor fidelity and disappears when the noise is set to zero.

View Article and Find Full Text PDF

We present detailed calculations of the temporal and spatial evolution of beam fanning in photorefractive crystals that is initiated by scattering from noise. We show that fanning starts from beam coupling between the incident radiation and part of the incident radiation scattered by noise at or near the input plane. We show that scattering within the volume of the crystal has negligible effect on fanning, that absorption affects the time response but not the spatial pattern of the fanning, and that the difference between calculations including only phase-matched terms and those including non-phase-matched terms is negligible.

View Article and Find Full Text PDF

We have demonstrated bistability in a phase-conjugate resonator containing an intracavity saturable absorber. The saturable absorber was a film of fluorescein-doped boric acid glass. The state of the resonator is determined by an external control beam incident upon the saturable absorber.

View Article and Find Full Text PDF

The photorefractive nonlinearity associated with the Dember space-charge field between electrons and holes produced by two-photon absorption is unambiguously isolated and studied in undoped CdTe by using a nondegenerate, forward-probing, polarization-sensitive, transient-grating technique with a temporal resolution of <5 ps.

View Article and Find Full Text PDF

A novel transient-grating geometry, which is nondegenerate, copropagating, phase matched, and polarization sensitive, is used to isolate and measure independently the ultrafast dynamics of multiple coexisting gratings in GaAs:EL2 with a temporal resolution of <5 psec. This technique permits the measurement of the evolution of the photorefractive grating in materials with zinc blende symmetry, where the photorefractive grating is usually obscured by the stronger free-carrier and instantaneous bound-electronic gratings.

View Article and Find Full Text PDF