Publications by authors named "Vallero D"

Dermal uptake is an important and complex exposure route for a wide range of chemicals. Dermal exposure can occur due to occupational settings, pharmaceutical applications, environmental contamination, or consumer product use. The large range of both chemicals and scenarios of interest makes it difficult to perform generalizable experiments, creating a need for a generic model to simulate various scenarios.

View Article and Find Full Text PDF

Given that human biomonitoring surveys show per- and polyfluoroalkyl substances (PFAS) to be ubiquitous, humans can be exposed to PFAS through various sources, including drinking water, food, and indoor environmental media. Data on the nature and level of PFAS in residential environments are required to identify important pathways for human exposure. This work investigated important pathways of exposure to PFAS by reviewing, curating, and mapping evidence for the measured occurrence of PFAS in exposure media.

View Article and Find Full Text PDF

Toxicokinetic (TK) models have been used for decades to estimate concentrations of per-and polyfluoroalkyl substances (PFAS) in serum. However, model complexity has varied across studies depending on the application and the state of the science. This scoping effort seeks to systematically map the current landscape of PFAS TK models by categorizing different trends and similarities across model type, PFAS, and use scenario.

View Article and Find Full Text PDF

To estimate potential chemical risk, tools are needed to prioritize potential exposures for chemicals with minimal data. Consumer product exposures are a key pathway, and variability in consumer use patterns is an important factor. We designed , a flexible dashboard-type screening-level exposure model, to rapidly visualize exposure rankings from consumer product use.

View Article and Find Full Text PDF

1,4-Dioxane is a persistent and mobile organic chemical that has been found by the United States Environmental Protection Agency (USEPA) to be an unreasonable risk to human health in some occupational contexts. 1,4-Dioxane is released into the environment as industrial waste and occurs in some personal-care products as an unintended byproduct. However, limited exposure assessments have been conducted outside of an occupational context.

View Article and Find Full Text PDF

Exposure to chemicals is influenced by associations between the individual's location and activities as well as demographic and physiological characteristics. Currently, many exposure models simulate individuals by drawing distributions from population-level data or use exposure factors for single individuals. The Residential Population Generator (RPGen) binds US surveys of individuals and households and combines the population with physiological characteristics to create a synthetic population.

View Article and Find Full Text PDF

Background: Human exposure to per- and polyfluoroalkyl substances has been modeled to estimate serum concentrations. Given that the production and use of these compounds have decreased in recent years, especially PFOA and PFOS, and that additional concentration data have become available from the US and other industrialized countries over the past decade, aggregate median intakes of these two compounds were estimated using more recent data.

Methods: Summary statistics from secondary sources were collected, averaged, and mapped for indoor and outdoor air, water, dust, and soil for PFOA and PFOS to estimate exposures for adults and children.

View Article and Find Full Text PDF

Purpose: There do not currently exist scientifically defensible ways to consistently characterize the human exposures (via various pathways) to near-field chemical emissions and associated health impacts during the use stage of building materials. The present paper thus intends to provide a roadmap which summarizes the current status and guides future development for integrating into LCA the chemical exposures and health impacts on various users of building materials, with a focus on building occupants.

Methods: We first review potential human health impacts associated with the substances in building materials and the methods used to mitigate these impacts, also identifying several of the most important online data resources.

View Article and Find Full Text PDF

In its 2014 report, A Framework Guide for the Selection of Chemical Alternatives, the National Academy of Sciences placed increased emphasis on comparative exposure assessment throughout the life cycle (i.e., from manufacturing to end-of-life) of a chemical.

View Article and Find Full Text PDF

Chemical risk assessment relies on knowledge of hazard, the dose-response relationship, and exposure to characterize potential risks to public health and the environment. A chemical with minimal toxicity might pose a risk if exposures are extensive, repeated, and/or occurring during critical windows across the human life span. Exposure assessment involves understanding human activity, and this activity is confounded by interindividual variability that is both biological and behavioral.

View Article and Find Full Text PDF

Background: The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership established the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three workshops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization, primarily for use in life cycle impact assessment (LCIA).

View Article and Find Full Text PDF

The volume and variety of manufactured chemicals is increasing, although little is known about the risks associated with the frequency and extent of human exposure to most chemicals. The EPA and the recent signing of the Lautenberg Act have both signaled the need for high-throughput methods to characterize and screen chemicals based on exposure potential, such that more comprehensive toxicity research can be informed. Prior work of Mitchell et al.

View Article and Find Full Text PDF

Various emerging technologies challenge existing governance processes to identify, assess, and manage risk. Though the existing risk-based paradigm has been essential for assessment of many chemical, biological, radiological, and nuclear technologies, a complementary approach may be warranted for the early-stage assessment and management challenges of high uncertainty technologies ranging from nanotechnology to synthetic biology to artificial intelligence, among many others. This paper argues for a risk governance approach that integrates quantitative experimental information alongside qualitative expert insight to characterize and balance the risks, benefits, costs, and societal implications of emerging technologies.

View Article and Find Full Text PDF

Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods.

View Article and Find Full Text PDF

Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g.

View Article and Find Full Text PDF

Air pollutant concentrations near major highways are usually attributed to a combination of nearby traffic emissions and regional background, and generally presumed to be additive in nature. During a near-road measurement study conducted in Las Vegas, NV, the effects of distant wildfires on regional air quality were indicated over a several day period in the summer of 2009. Area-wide elevated particulate levoglucosan (maximum of 0.

View Article and Find Full Text PDF

United States Environmental Protection Agency (USEPA) researchers are developing a strategy for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential.

View Article and Find Full Text PDF

Consumer products are a primary source of chemical exposures, yet little structured information is available on the chemical ingredients of these products and the concentrations at which ingredients are present. To address this data gap, we created a database of chemicals in consumer products using product Material Safety Data Sheets (MSDSs) publicly provided by a large retailer. The resulting database represents 1797 unique chemicals mapped to 8921 consumer products and a hierarchy of 353 consumer product "use categories" within a total of 15 top-level categories.

View Article and Find Full Text PDF

The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure.

View Article and Find Full Text PDF

A prospective personal exposure study, involving indoor and outdoor releases, was conducted in upper Midtown Manhattan in New York City as part of the Urban Dispersion Program (UDP) focusing on atmospheric dispersion of chemicals in complex urban settings. The UDP experiments involved releases of very low levels of perfluorocarbon tracers (PFTs) in Midtown Manhattan at separate locations, during two seasons in 2005. The study presented here includes both outdoor and indoor releases of the tracers, and realistic scripted activities for characterizing near source and neighborhood-scale exposures using 1-min and 10-min duration samples, respectively.

View Article and Find Full Text PDF

The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals.

View Article and Find Full Text PDF

While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA's need to develop novel approaches and tools for rapidly prioritizing chemicals, a "Challenge" was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA's effort to develop an approach comparable to other international efforts.

View Article and Find Full Text PDF

Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal of improving the parameterization of human activity algorithms in EPA's exposure modeling efforts. Despite the longitudinal, multi-season nature of the study, participant non-compliance with the protocol over time did not play a major role in data collection.

View Article and Find Full Text PDF

Bionanomedicine and environmental research share need common terms and ontologies. This study applied knowledge systems, data mining, and bibliometrics used in nano-scale ADME research from 1991 to 2011. The prominence of nano-ADME in environmental research began to exceed the publication rate in medical research in 2006.

View Article and Find Full Text PDF