Publications by authors named "Vallejos S"

Betalains in beetroots offer notable colouring properties and health benefits, including antioxidant, anti-inflammatory, hepatoprotective, and antitumorous activities. However, they degrade due to processing and storage conditions like temperature, pH, oxygen, and light-exposure. Traditional betalain determination methods are resource-intensive solid-liquid extractions.

View Article and Find Full Text PDF

Water pollution from industrial or household waste, containing dyes from the textile industry, poses a significant environmental challenge requiring immediate attention. In this study, we have developed a crosslinked-smart-polymer film based on 2-(dimethylamino)ethyl methacrylate copolymerized with other hydrophilic and hydrophobic commercial monomers, and its efficacy in removing 21 different textile dyes was assessed. The smart polymer effectively interacts with and adsorbs dyes, inducing a noticeable colour change.

View Article and Find Full Text PDF

In recent years, sensory polymers have evolved significantly, emerging as versatile and cost-effective materials valued for their flexibility and lightweight nature. These polymers have transformed into sophisticated, active systems capable of precise detection and interaction, driving innovation across various domains, including smart materials, biomedical diagnostics, environmental monitoring, and industrial safety. Their unique responsiveness to specific stimuli has sparked considerable interest and exploration in numerous applications.

View Article and Find Full Text PDF

Gradient porous materials, particularly carbon-based materials, hold immense potential in the fields of batteries, energy storage, electrocatalysis, and sensing, among others, by synergistically combining the attributes associated with each pore size within a unified structural framework. In this study, we developed a gradient porous aramid (GP-Aramid) by incorporating cellulose acetate as a porosity promoter in the polymer casting solution in different proportions. These GP-Aramids were subsequently transformed into their pyrolyzed counterparts (GP-Pyramids), retaining their original structures while displaying diverse cellular or dense microstructures inherited from the parent aramid, as confirmed via scanning electron microscopy.

View Article and Find Full Text PDF

This study was aimed at researching the impact of the drying procedure (using the most appropriate honey-maltodextrin concentration for each drying technique) and botanical origin of honey on the physicochemical and potentially bioactive properties of honey powders that were made using maltodextrin as a carrier. The research was carried out with thyme, lavender, vetch and multifloral honey dehydrated using vacuum drying and freeze drying. The analysed parameters were moisture, water activity, colour, glass transition temperature, powder recovery, hygroscopic index and rate, tapped density, solubility, and phenolics as well as antiradical (ABTS, ROO, OH and O), anti-inflammatory and antimicrobial (against , and ) activities.

View Article and Find Full Text PDF

Mandelonitrile is a nitrogen-containing compound, considered an essential secondary metabolite. Chemically, it is a cyanohydrin derivative of benzaldehyde, with relevant functions in different physiological processes including defense against phytophagous arthropods. So far, procedures for detecting mandelonitrile have been effectively applied in cyanogenic plant species such as spp.

View Article and Find Full Text PDF

Quality control in the food industry is of the upmost importance from the food safety, organoleptic and commercial viewpoints. Accordingly, the development of , rapid, and costless analytical tools is a valuable task in which we are working. Regarding this point, the copper content of grape must has to be determined by wineries along the wine production process.

View Article and Find Full Text PDF

The importance of systematic and efficient recycling of all forms of plastic is no longer a matter for debate. Constituting the sixth most produced polymer family worldwide, polyurethanes, which are used in a broad variety of applications (buildings, electronics, adhesives, sealants, etc.), are particularly important to recycle.

View Article and Find Full Text PDF

Methyl salicylate (MeSal) is an organic compound present in plants during stress events and is therefore a key marker for early plant disease detection. It has usually been detected by conventional methods that require bulky and costly equipment, such as gas chromatography or mass spectrometry. Currently, however, chemical sensors provide an alternative for MeSal monitoring, showing good performance for its determination in the vapour or liquid phase.

View Article and Find Full Text PDF

The initial stages of the pandemic caused by SARS-CoV-2 showed that early detection of the virus in a simple way is the best tool until the development of vaccines. Many different tests are invasive or need the patient to cough up or even drag a sample of mucus from the throat area. Besides, the manufacturing time has proven insufficient in pandemic conditions since they were out of stock in many countries.

View Article and Find Full Text PDF

Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste. However, current trends in polymers for food, water, and beverage applications are moving forward into the design and preparation of advanced polymers, which can act as active packaging, bearing active ingredients in their formulation, or controlling the head-space composition to extend the shelf-life of the goods inside. In addition, polymers can serve as sensory polymers to detect and indicate the presence of target species, including contaminants of food quality indicators, or even to remove or separate target species for later quantification.

View Article and Find Full Text PDF

Glucose oxidase (GOX) and catalase (CAT) regulate the amount of H2O2 in honey, by generating or consuming it, so they are related to the antibacterial and antioxidant activity of honey. However, their activities are hardly analysed, since the process requires a previous dialysis that is non-selective, very time-consuming (>24 h), eco-unfriendly (>6L of buffer) and expensive. This research shows the design and performance of a material that selectively removes the actual interferents.

View Article and Find Full Text PDF

We report on an innovative method to measure the Zn(II) concentration in commercial pet food samples, both wet and dry food. It is based on a colorimetric sensory polymer prepared from commercial monomers and 0.5 % of a synthetic monomer having a quinoline sensory core (N-(8-(2-azidoacetamido)quinolin-5-yl)methacrylamide).

View Article and Find Full Text PDF

We have developed an in situ methodology for determining nitrite concentration in processed meats that can also be used by unskilled personnel. It is based on a colorimetric film-shaped sensory polymer that changes its color upon contacting the meat and a mobile app that automatically calculates the manufacturing and residual nitrite concentration by only taking digital photographs of sensory films and analyzing digital color parameters. The film-shaped polymer sensor detects nitrite anions by an azo-coupling reaction, since they activate this reaction between two of the four monomers that the copolymer is based on.

View Article and Find Full Text PDF

We have faced the preparation of fully water-soluble fluorescent peptide substrate with long-term environmental stability (in solution more than 35 weeks) and, accordingly, with stable results in the use of this probe in determining the activity of enzymes. We have achieved this goal by preparing a co-polymer of the commercial N-vinyl-2-pyrrolidone (99.5% mol) and a fluorescent substrate for trypsin activity determination having a vinylic group (0.

View Article and Find Full Text PDF

Although it is well-known that nitroaromatic compounds quench the fluorescence of different conjugated polymers and form colored Meisenheimer complexes with proper nucleophiles, the potential of paper as a substrate for those macromolecules can be further developed. This work undertakes this task, impregnating paper strips with a fluorene-phenylene copolymer with quaternary ammonium groups, a bisfluorene-based cationic polyelectrolyte, and poly(2-(dimethylamino)ethyl methacrylate) (polyDMAEMA). Cationic groups make the aforementioned polyfluorenes attachable to paper, whose surface possesses a slightly negative charge and avoid interference from cationic quenchers.

View Article and Find Full Text PDF

In this work, the gas-sensing functionality of porous ceramic bodies formed by the slip casting technique was studied using perovskite nanoparticles of an MSnO system (M = Ba, Ca, Zn) synthesized by a chemical route. The performance and reliability of the sensitive materials in the presence of different volatile organic compounds (acetone, ethanol, and toluene), and other gases (CO, H and NO) were analysed. The ZnSnO, BaSnO, and CaSnO sensors showed sensitivities of 40, 16, and 8% ppm towards acetone, ethanol, and toluene vapours, respectively.

View Article and Find Full Text PDF

Plant-pest interactions involve multifaceted processes encompassing a complex crosstalk of pathways, molecules, and regulators aimed at overcoming defenses developed by each interacting organism. Among plant defensive compounds against phytophagous arthropods, cyanide-derived products are toxic molecules that directly target pest physiology. Here, we identified the Arabidopsis (Arabidopsis thaliana) gene encoding hydroxynitrile lyase (AtHNL, At5g10300) as one gene induced in response to spider mite (Tetranychus urticae) infestation.

View Article and Find Full Text PDF

The synthesis and preparation of 12 chromogenic polymers used to build an intelligent label for security paper applications are described. The process involves coating paper sheets with the polymers. Depending on the number of different polymers used in a combinatory way, a maximum of 12 combinations is possible, thus creating a matrix that is practically impossible to counterfeit.

View Article and Find Full Text PDF

Zinc oxide rod structures are synthetized and subsequently modified with Au, FeO, or CuO to form nanoscale interfaces at the rod surface. X-ray photoelectron spectroscopy corroborates the presence of Fe in the form of oxide-FeO; Cu in the form of two oxides-CuO and CuO, with the major presence of CuO; and Au in three oxidation states-Au, Au, and Au, with the content of metallic Au being the highest among the other states. These structures are tested towards nitrogen dioxide, ethanol, acetone, carbon monoxide, and toluene, finding a remarkable increase in the response and sensitivity of the Au-modified ZnO films, especially towards nitrogen dioxide and ethanol.

View Article and Find Full Text PDF

A new original application for a polyacrylic film based on the monomers 2-(dimethylamino)ethyl methacrylate (NNDA), 2-hydroxyethyl acrylate (2HEA) and methylmethacrylate (MMA) as a starch azure container has been set up for a simple determination of honey diastase activity. The proposed method is based on the correlation of reducing sugars generated during the enzymatic process with the Schade reference assay. The polyacrylic film is charged with starch azure acting as a container for this substance; thus, the starch does not interfere in the measurement of reducing sugars, so that the diastase activity is easily calculated.

View Article and Find Full Text PDF

This review summarizes the recent research efforts and developments in nanomaterials for sensing volatile organic compounds (VOCs). The discussion focuses on key materials such as metal oxides (e.g.

View Article and Find Full Text PDF

We have developed a new method for the rapid (2 h) and inexpensive (materials cost < 0.02 €/sample) "2-in-1" determination of the total phenolic content (TPC) and the antioxidant activity (AOX) in honey samples. The method is based on hydrophilic colorimetric films with diazonium groups, which react with phenols rendering highly colored azo groups.

View Article and Find Full Text PDF

We anchored a colourimetric probe, comprising a complex containing copper (Cu(II)) and a dye, to a polymer matrix obtaining film-shaped chemosensors with induced selectivity toward glycine. This sensory material is exploited in the selectivity detection of glycine in complex mixtures of amino acids mimicking elastin, collagen and epidermis, and also in following the protease activity in a beefsteak and chronic human wounds. We use the term inducing because the probe in solution is not selective toward any amino acid and we get selectivity toward glycine using the solid-state.

View Article and Find Full Text PDF

This work presents the effect of magnesium (Mg) doping on the sensing properties of tin dioxide (SnO) thin films. Mg-doped SnO films were prepared via a spray pyrolysis method using three doping concentrations (0.8 at.

View Article and Find Full Text PDF