Publications by authors named "Valkov N"

Article Synopsis
  • - The study investigates the relationship between plasma microRNAs (miRNAs) and key cardiac biomarkers like NT-proBNP and troponin in patients with heart failure, measuring their impact on heart structure and function.
  • - Utilizing data from 139 heart failure patients, researchers found significant associations between specific miRNAs and clinical heart metrics, revealing how these factors predict heart function and future health events.
  • - The findings suggest that analyzing miRNAs alongside traditional biomarkers offers better prognostic insights for heart failure patients, indicating their potential role in assessing cardiovascular health outcomes.
View Article and Find Full Text PDF

MCU is widely recognized as a responsible gene for encoding a pore-forming subunit of highly mitochondrial-specific and Ca -selective channel, mitochondrial Ca uniporter complex (mtCUC). Here, we report a novel short variant derived from the MCU gene (termed MCU-S) which lacks mitochondria-targeted sequence and forms a Ca - permeable channel outside of mitochondria. MCU-S was ubiquitously expressed in all cell-types/tissues, with particularly high expression in human platelets.

View Article and Find Full Text PDF

The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database.

View Article and Find Full Text PDF

One promising goal for utilizing the molecular information circulating in biofluids is the discovery of clinically useful biomarkers. Extracellular RNAs (exRNAs) are one of the most diverse classes of molecular cargo, easily assayed by sequencing and with expressions that rapidly change in response to subject status. Despite diverse exRNA cargo, most evaluations from biofluids have focused on small RNA sequencing and analysis, specifically on microRNAs (miRNAs).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) mediate intercellular signaling by transferring their cargo to recipient cells, but the functional consequences of signaling are not fully appreciated. RBC-derived EVs are abundant in circulation and have been implicated in regulating immune responses. Here, we use a transgenic mouse model for fluorescence-based mapping of RBC-EV recipient cells to assess the role of this intercellular signaling mechanism in heart disease.

View Article and Find Full Text PDF

Rationale: Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure.

Objective: To investigate the mechanism of miR-30d-mediated cardioprotection in HF.

Methods And Results: In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis.

View Article and Find Full Text PDF

In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules.

View Article and Find Full Text PDF

MicroRNA-1 (miRNA-1) has been long viewed as a muscle-specific miRNA and plays a critical role in myocardium and cardiomyocytes by controlling myocyte growth and rhythm. We identified that miRNA-1 is expressed in cardiac fibroblasts, which are one of the major non-muscle cell types in myocardium and are responsible for cardiac fibrosis in pathological conditions. In this study, we aimed to investigate the effect and mechanism of action of miRNA-1 on cardiac fibroblast proliferation.

View Article and Find Full Text PDF

We previously showed an agarose overlay on keratocytes cultured in media containing pharmacological levels of insulin enhanced collagen processing and collagen fibril formation. In this study, we compared collagen processing by keratocytes cultured in media containing physiological levels of IGF-I, TGF-β, FGF-2, and PDGF in standard and in agarose overlay cultures. Pepsin digestion/SDS PAGE was used to determine the levels of procollagen secreted into the media and the collagen content of the ECM associated with the cell layer.

View Article and Find Full Text PDF

Radon is emitted to the atmosphere with quasi constant emission rates depending on the radium concentration in the earth's crust and soil physical properties. In this way, the 222Rn and 220Rn concentration in air reflects significantly the thickness of the atmospheric boundary layer (ABL). The aerosol-associated, beta-emitting progeny nuclides of 222Rn were measured daily in the framework of the atmospheric radioactivity monitoring program of NIMH at Sofia.

View Article and Find Full Text PDF

Introduction: Tissue microarrays (TMA) enable rapid analysis of biomarkers in large-scale studies involving archival tumor specimens, however, their utility in heterogeneous tumors such as ovarian cancer is limited.

Methods: In this study, immunohistochemical analysis was done on TMAs comprised of epithelial ovarian cancer (EOC) to estimate the prevalence of loss of expression of three mismatch repair proteins. TMAs were initially created using cores sampled from the center of donor tissue blocks from 59 EOC cases.

View Article and Find Full Text PDF

Previously, pharmacological levels of insulin have been shown to stimulate the synthesis of normal corneal stromal collagen and proteoglycans by bovine keratocytes in culture. Here we compared insulin to physiological levels of IGF-I and found that IGF-I also stimulated the synthesis of these extracellular matrix components, but less than that of insulin. Keratocytes in monolayer culture secreted most of the collagen synthesized into the media in the form of procollagen, a precursor of collagen.

View Article and Find Full Text PDF

Background: Gemcitabine incorporation into DNA enhances cleavage complexes in vitro when combined with topoisomerase I inhibitors and demonstrates synergy in cancer cells when given with irinotecan. Topoisomerase I inhibitors require that topoisomerase I interacts with DNA to exert activity.

Methods: Patients who had received previous anthracycline therapy or were not candidates for anthracycline therapy received gemcitabine at a dose of 1000 mg/m2 intravenously over 30 minutes followed by irinotecan at a dose of 100 mg/m2 over 90 minutes on Days 1 and 8 of a 21-day cycle.

View Article and Find Full Text PDF

Purpose: A phase II trial of the novel camptothecin karenitecin (BNP1350) was conducted to determine its efficacy and tolerability in patients with metastatic melanoma. Patients were biopsied to determine topoisomerase expression at baseline and response to therapy.

Patients And Methods: Eligible patients had metastatic melanoma with up to three prior chemotherapy and/or any number of immunotherapy regimens.

View Article and Find Full Text PDF

Described in the paper is a case study targeted at detecting the age-related dynamics of some indices and psychophysiological mechanisms of decision-making in senior schoolchildren and humanitarian students; the study was based on computer-aided test systems. The research methods are presented and its results are analyzed.

View Article and Find Full Text PDF

In this study we have investigated the role of topoisomerase (topo) IIalpha trafficking in cellular drug resistance. To accomplish this, it was necessary to separate the influence of cell cycle, drug uptake, topo protein levels, and enzyme trafficking on drug sensitivity. Thus, we developed a cell model (called accelerated plateau) using human myeloma H929 cells that reproducibly translocates topo IIalpha to the cytoplasm.

View Article and Find Full Text PDF

It is thought that when tumor cells are treated with anticancer drugs, they die through the apoptotic pathway and that cell resistance to cancer chemotherapy is mainly a resistance to apoptosis commitment. p53 is not functional in nearly half of the tumors examined and because of its involvement (directly or through its target genes) in the apoptotic pathway, drug resistance to chemotherapy has been largely attributed to the status of this "tumor suppressor protein". Topoisomerase II (topo II) inhibitors are widely used not only as single agents, but also in the majority of combination treatment protocols for hematologic malignancies and solid tumors.

View Article and Find Full Text PDF

One of the more recently identified bacterial exportation systems is the type IV secretion mechanism, which is characterized by a multiprotein complex that spans the inner and outer bacterial membranes and contains a pilin component. The most thoroughly studied type IV secretion system is encoded by the virB operon of Agrobacterium tumefaciens. In Bartonella henselae, 8 of the 10 virB operon genes share extensive homology and arrangement with the virB operon of A.

View Article and Find Full Text PDF

We previously showed that adhesion of myeloma cells to fibronectin (FN) by means of beta1 integrins causes resistance to certain cytotoxic drugs. The study described here found that adhesion of U937 human histiocytic lymphoma cells to FN provides a survival advantage with respect to damage induced by the topoisomerase (topo) II inhibitors mitoxantrone, doxorubicin, and etoposide. Apoptosis induced by a topo II inhibitor is thought to be initiated by DNA damage.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) modify nucleosomal histones, have a key role in the regulation of gene transcription, and may be involved in cell-cycle regulation, differentiation and human cancer. Purified recombinant human HDAC1 protein was used to screen a cDNA expression library, and one of the clones identified encoded DNA topoisomerase II (Topo II), an enzyme known to have a role in transcriptional regulation and chromatin organization. Coimmunoprecipitation experiments indicate that HDAC1 and HDAC2 are associated with Topo II in vivo under normal physiological conditions.

View Article and Find Full Text PDF

Bacterial htrA genes are typically activated as part of the periplasmic stress response and are dependent on the extracytoplasmic sigma factor rpoE. A putative promoter region, P1, of the sigma(E)-type heat-inducible promoters has previously been identified upstream of the htrA gene of Bartonella henselae. Further analysis of the htrA mRNA by primer extension demonstrated that transcription initiates from P1 and a second region downstream of P1.

View Article and Find Full Text PDF

Citrus tristeza virus (CTV) has 10 3' open reading frames (ORFs) of unknown function except for the two coat proteins. The highest produced subgenomic RNAs are those of the major coat protein gene (p25) and the 3' most genes, p20 and p23. The proteins from three ORFs, p25, p27, and p20, were examined in the yeast two-hybrid assay for the interactions between themselves and to one another.

View Article and Find Full Text PDF

The role of the mitogen-activated protein kinase (MAPK) signal transduction pathway in the proliferation of mammalian cells has been well established. However, there are relatively few reports concerning cell differentiation being mediated by MAPK. The effect of phorbol 12-myristate 13-acetate (PMA) on cell differentiation and signal transduction in a human myeloid leukemia cell line, TF-1a, was investigated.

View Article and Find Full Text PDF

The resistance of several leukaemic and myeloma cell lines (CCRF, L1210, HL-60, KG-1a and RPMI 8226) to VP-16 was found to increase with cell density and to be maximal (3.5- to 39-fold) in plateau phase cell cultures, as measured by clonogenic and MTT assays. Non-transformed confluent Flow 2000 human fibroblasts and Chinese hamster ovary (CHO) cells were also five- and 15-fold resistant to VP-16 respectively.

View Article and Find Full Text PDF

The p53 null HL-60 cell line was transfected with plasmids coding for either the wild-type p53 or mutant p53 gene. The stable expression of wild-type p53 resulted in a significant increase in sensitivity to the topoisomerase II poisons etoposide and doxorubicin, but not to the topoisomerase II inhibitors razoxane and ADR-529. HL-60 cells expressing wild-type p53 demonstrated 8- to 10-fold more VP-16 induced DNA breaks by the alkaline elution assay.

View Article and Find Full Text PDF