Publications by authors named "Valko K"

Background And Purpose: Organic UV filters are commonly used in sunscreen and cosmetic formulations to protect against harmful UV radiation. However, concerns have emerged over their potential toxic effects on aquatic organisms. This study aims to investigate the acute aquatic toxicity of 13 organic UV filters and determine whether phospholipid binding, measured through biomimetic chromatographic methods, is a better predictor of toxicity than the traditionally used octanol-water partition coefficient (log ).

View Article and Find Full Text PDF

Inhibitors of Kelch-like ECH-associated protein 1 (Keap1) increase the activity of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by stalling its ubiquitination and degradation. This enhances the expression of genes encoding proteins involved in drug detoxification, redox homeostasis, and mitochondrial function. Nrf2 activation offers a potential therapeutic approach for conditions including Alzheimer's and Parkinson's diseases, vascular inflammation, and chronic obstructive airway disease.

View Article and Find Full Text PDF

Biomimetic chromatography is the name of the High Performance Liquid Chromatography (HPLC) methods that apply stationary phases containing proteins and phospholipids that can mimic the biological environment where drug molecules distribute. The applied mobile phases are aqueous organic with a pH of 7.4 to imitate physiological conditions that would be encountered in the human body.

View Article and Find Full Text PDF

The major causes of failure of drug discovery compounds in clinics are the lack of efficacy and toxicity. To reduce late-stage failures in the drug discovery process, it is essential to estimate early the probability of adverse effects and potential toxicity. Cardiotoxicity is one of the most often observed problems related to a compound's inhibition of the hERG channel responsible for the potassium cation flux.

View Article and Find Full Text PDF

Immobilized Artificial Membrane (IAM) chromatography columns have been used to model the in vivo distribution of drug discovery compounds. Regis Technologies Inc., the manufacturer, had to replace the silica support and consequently introduced a new IAM.

View Article and Find Full Text PDF

Chloroquine and hydroxy-chloroquine already established as anti-malarial and lupus drugs have recently gained renewed attention in the fight against the Covid-19 pandemic. Bio-mimetic HPLC methods have been used to measure the protein and phospholipid binding of the racemic mixtures of the drugs. The tissue binding and volume of distribution of the enantiomers have been estimated.

View Article and Find Full Text PDF

Three promising antibacterial peptides were studied with regard to their ability to inhibit the growth and kill the cells of clinical strains of Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. The multifunctional gramicidin S (GS) was the most potent, compared to the membranotropic temporin L (TL), being more effective than the innate-defence regulator IDR-1018 (IDR). These activities, compared across 16 strains as minimal bactericidal and minimal inhibitory concentrations (MIC), are independent of bacterial resistance pattern, phenotype variations and/or biofilm-forming potency.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is caused by selective and progressive loss of spinal, bulbar and cortical motoneurons and leads to irreversible paralysis, loss of speech, inability to swallow and respiratory malfunctions with the eventual death of the affected individual in a rapid disease course. Several suggested molecular pathways are reviewed including SOD1 gene mutation, protein nitrosylation, phosphorylation and oxidative stress, excitotoxicity, glutamate transporter deprivation, mitochondrial involvement, protein aggregation and motor neuron trophic factors. The role of insulin and its receptor in the brain is described.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Sunitinib, a multikinase inhibitor, was the first Fms-like tyrosine kinase 3 (FLT3) inhibitor clinically used against AML. Off-target effects are a major concern for multikinase inhibitors.

View Article and Find Full Text PDF

An alternative approach has been developed to estimate the clinical dose of new drug molecules at an early stage in the drug discovery process. This approach has been compared to traditional methods using the clinical dose as indicated on the drug label of 136 marketed drugs. At the early stages of drug discovery only in silico predictions or some initial in vitro screening data are normally available, typically parameters such as affinity/potency (pXC50)from isolated enzymes or receptors, measured albumin and phospholipid binding using biomimetic HPLC measurements, and in vitro clearance using P450 enzymes or liver microsomes.

View Article and Find Full Text PDF

HPLC methods that use chromatographic retention times for gaining information about the properties of compounds for the purpose of designing drug molecules are reviewed. Properties, such as lipophilicity, protein binding, phospholipid binding, and acid/base character can be incorporated in the design of molecules with the right biological distribution and pharmacokinetic profile to become an effective drug. Standardization of various methodologies is suggested in order to obtain data suitable for inter-laboratory comparison.

View Article and Find Full Text PDF

The ability to explain distribution patterns from drug physicochemical properties and binding characteristics has been explored for more than 200 compounds by interrogating data from quantitative whole body autoradiography studies (QWBA). These in vivo outcomes have been compared to in silico and in vitro drug property data to determine the most influential properties governing drug distribution. Consistent with current knowledge, in vivo distribution was most influenced by ionization state and lipophilicity which in turn affected phospholipid and plasma protein binding.

View Article and Find Full Text PDF

One of the key challenges facing early stage drug discovery is understanding the commonly observed difference between the activity of compounds in biochemical assays and cellular assays. Traditionally, indirect or estimated cell permeability measurements such as estimations from logP or artificial membrane permeability are used to explain the differences. The missing link is a direct measurement of intracellular compound concentration in whole cells.

View Article and Find Full Text PDF

The hybridization of hits, identified by complementary fragment and high throughput screens, enabled the discovery of the first series of potent inhibitors of mitochondrial branched-chain aminotransferase (BCATm) based on a 2-benzylamino-pyrazolo[1,5-a]pyrimidinone-3-carbonitrile template. Structure-guided growth enabled rapid optimization of potency with maintenance of ligand efficiency, while the focus on physicochemical properties delivered compounds with excellent pharmacokinetic exposure that enabled a proof of concept experiment in mice. Oral administration of 2-((4-chloro-2,6-difluorobenzyl)amino)-7-oxo-5-propyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile 61 significantly raised the circulating levels of the branched-chain amino acids leucine, isoleucine, and valine in this acute study.

View Article and Find Full Text PDF

A number of methods to improve the passive permeability of a set of cyclic peptides have been investigated using 6- and 7-mer macrocyclic templates. In many cases the peptides were designed by molecular dynamics calculations to evaluate the methods. The aim of this study was not only to improve passive permeability, but also to balance permeability with other physicochemical properties with the goal of understanding and applying the knowledge to develop active cyclic peptides into drug candidates.

View Article and Find Full Text PDF

Introduction: Complex physicochemical and biological processes influence the oral absorption of a drug molecule. Consideration of these processes is an important activity during the optimisation of potential candidate molecules.

Areas Covered: The authors review the applications of physicochemical and structural requirements for intestinal absorption.

View Article and Find Full Text PDF

The concepts of drug efficiency (D(eff) ) and Drug Efficiency Index (DEI) have been recently introduced as useful parameters to optimize the absorption, distribution, metabolism, elimination/excretion, and toxicity properties and in vivo efficacy potential of molecules during lead optimization and at pre-clinical stages. The available free drug concentration relative to dose depends on the compound's bioavailability, clearance, and the nonspecific binding to proteins and phospholipids. In this paper, we have demonstrated, using the data of over 115 known drug molecules, that the nonspecific binding can be determined in vitro very efficiently using biomimetic high-performance liquid chromatography measurements.

View Article and Find Full Text PDF

Introduction: The ultimate objective of optimizing adsorption, distribution, metabolism and excretion (ADME) parameters in drug discovery is to maximize the unbound concentration at the site of action for a given dose level. This has the added benefit of minimizing the efficacious dose, reducing the potential for attrition related to drug burden and direct organ toxicity. The concept of drug efficiency was formulated as a tool to obtain a balanced profile between target affinity and ADME properties during lead optimization.

View Article and Find Full Text PDF

Macrolides are stereospecific macrolactones of high molecular weights. Herein, 600 mostly semisynthetic macrolides are compared with 50,000 small non-macrolide synthetic molecules in terms of measured physicochemical properties in order to assess the drug-likeness and developability chances of macrolides. The pre-selected set of diverse macrolides is comprised mostly of derivatives of clarithromycin and azithromycin cores.

View Article and Find Full Text PDF

Macrolides with 14- and 15-membered ring are characterized by high and extensive tissue distribution, as well as good cellular accumulation and retention. Since macrolide structures do not fit the Lipinski rule of five, macrolide pharmacokinetic properties cannot be successfully predicted by common models based on data for small molecules. Here we describe the development of the first models for macrolide cellular pharmacokinetics.

View Article and Find Full Text PDF

The in vivo unbound volume of distribution (V(du)) can be used to estimate the free steady-state plasma concentration with a given dose of a drug administered intravenously. We have demonstrated that the calibrated HPLC retention times obtained on biomimetic stationary phases, such as immobilised human serum albumin and phosphatidyl-choline, can be used to estimate compounds' in vivo behaviour. The mechanistic models are based on the assumption that the sum of the albumin and phospholipid binding has the most significant impact on reducing compounds' free concentration both in plasma and in tissues.

View Article and Find Full Text PDF

Modification of the benzo rings of 3-(1,1-dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones into heteroaromatic systems was investigated to enhance physicochemical properties and potency profile of this class of inhibitors. The synthesis and biological activity of the derived compounds is discussed.

View Article and Find Full Text PDF

The volume of distribution (VD) in humans of 179 known drug molecules (acids, bases, and neutrals) has been modeled using two biomimetic-binding measurements. The phospholipid binding (log K (IAM)) and the plasma protein binding (log K (HSA)) have been calculated from gradient HPLC retention times on immobilized artificial membrane (IAM) and on human serum albumin (HSA) columns, respectively. The log VD values showed good correlation with the compounds' relative binding to IAM and HSA as follows: log VD=0.

View Article and Find Full Text PDF

A short, efficient, and highly stereoselective synthesis of a series of (3R,6R,7R)-2,5-diketopiperazine oxytocin antagonists and their pharmacokinetics in rat and dog is described. Prediction of the estimated human oral absorption (EHOA) using measured lipophilicity (CHI log D) and calculated size (cMR) has allowed us to rank various 2,5-diketopiperazine templates and enabled us to focus effort on those templates with the greatest chance of high bioavailability in humans. This rapidly led to the 2',4'-difluorophenyl-dimethylamide 25 and the benzofuran 4 with high levels of potency (pK(i)) and good bioavailability in the rat and dog.

View Article and Find Full Text PDF

Octanol-water partition coefficients are the most widely used measure of lipophilicity in modelling biological partition/distribution. It has long been recognised that the retention of a compound in reversed-phase liquid chromatography is governed by its lipophilicity/hydrophobicity, and thus shows correlation with an octanol-water partition coefficient. A great number of publications have reported the efforts made to adjust HPLC conditions to measure surrogate octanol-water partition coefficients.

View Article and Find Full Text PDF