One promising approach to cancer therapeutics is to induce changes in gene expression that either reduce cancer cell proliferation or induce cancer cell death. Therefore, delivering oligonucleotides (siRNA/miRNA) that target specific genes or gene programs might have a potential therapeutic benefit. The aim of this study was to examine the potential of cell-based delivery of oligonucleotides to cancer cells via two naturally occurring intercellular pathways: gap junctions and vesicular/exosomal traffic.
View Article and Find Full Text PDFInt J Mol Sci
September 2020
Gap junction channels mediate the direct intercellular passage of small ions as well as larger solutes such as second messengers. A family of proteins called connexins make up the subunits of gap junction channels in chordate animals. Each individual connexin forms channels that exhibit distinct permeability to molecules that influence cellular signaling, such as calcium ions, cyclic nucleotides, or inositol phosphates.
View Article and Find Full Text PDFGap junction channels made of different connexins have distinct permeability to second messengers, which could affect many cell processes, including lens epithelial cell division. Here, we have compared the permeability of IP and Ca through channels made from two connexins, Cx43 and Cx50, that are highly expressed in vertebrate lens epithelial cells. Solute transfer was measured while simultaneously monitoring junctional conductance via dual whole-cell/perforated patch clamp.
View Article and Find Full Text PDFWe previously demonstrated that a two-cell syncytium, composed of a ventricular myocyte and an mHCN2 expressing cell, recapitulated most properties of in vivo biological pacing induced by mHCN2-transfected hMSCs in the canine ventricle. Here, we use the two-cell syncytium, employing dynamic clamp, to study the roles of g (pacemaker conductance), g (background K conductance), and g (intercellular coupling conductance) in biological pacing. We studied g and g in single HEK293 cells expressing cardiac sodium current channel Na1.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2019
Purpose: Gap junction channels exhibit connexin specific biophysical properties, including the selective intercellular passage of larger solutes, such as second messengers. Here, we have examined the cyclic nucleotide permeability of the lens connexins, which could influence events like epithelial cell division and differentiation.
Methods: We compared the cAMP permeability through channels composed of Cx43, Cx46, or Cx50 using simultaneous measurements of junctional conductance and intercellular transfer.
Biochim Biophys Acta Biomembr
December 2018
Cell-to-cell communication between bone, cartilage and the synovial membrane is not fully understood and it is only attributed to the diffusion of substances through the extracellular space or synovial fluid. In this study, we found for the first time that primary bone cells (BCs) including osteocytes, synovial cells (SCs) and chondrocytes (CHs) are able to establish cellular contacts and to couple through gap junction (GJ) channels with connexin43 (Cx43) being dominant. Transwell co-culture and identification by mass spectrometry revealed the exchange of essential amino acids, peptides and proteins including calnexin, calreticulin or CD44 antigen between contacting SCs, BCs and CHs.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2018
This review focuses on the biophysical properties and structure of the pore and vestibule of homotypic gap junction channels as they relate to channel permeability and selectivity. Gap junction channels are unique in their sole role to connect the cytoplasm of two adjacent cells. In general, these channels are considered to be poorly selective, possess open probabilities approximating unity, and exhibit mean open times ranging from milliseconds to seconds.
View Article and Find Full Text PDFGap junctions ensure the rapid propagation of the action potential throughout the myocardium. Three mutant forms of connexin40 (Cx40; A96S, M163V, and G38D), the primary component of the atrial gap junction channel, are associated with atrial fibrillation and retain the ability to form functional channels. We determined the biophysical properties of these mutant gap junctions in transiently transfected HeLa and N2A cells.
View Article and Find Full Text PDF4-phenylbutyrate (4-PB) has been shown to increase the protein content in a number of cells types. One such protein is Connexin43 (Cx43). We show here that 4-phenylbutyrate exposure results in significantly elevated cell to cell coupling, as determined by dual whole cell patch clamp.
View Article and Find Full Text PDFCellular delivery of small interfering RNAs to target cells of a tissue has the potential to travel by two intercellular pathways. For intimately apposed cells gap junctions allow transport exclusive of the extracellular space. For cells not in intimate contact, exocytotic release of vesicular contents and subsequent retrieval via endocytosis of exosomes and other vesicular contents represent an alternative intercellular delivery system that utilizes the extracellular space.
View Article and Find Full Text PDFObjective: This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels.
Methods: Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy.
Longitudinal resistance is a key factor in determining cardiac action potential propagation. Action potential conduction velocity has been shown to be proportional to the square root of longitudinal resistance. A major determinant of longitudinal resistance in myocardium is the gap junction channel, comprised connexin proteins.
View Article and Find Full Text PDFCyclic adenosine monophosphate (cAMP) is a well-known intracellular and intercellular second messenger. The membrane permeability of such molecules has potential importance for autocrine-like or paracrine-like delivery. Here experiments have been designed to demonstrate whether gap junction hemichannels, composed of connexins, are a possible entrance pathway for cyclic nucleotides into the interior of cells.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46.
View Article and Find Full Text PDFWe describe the construction of a dynamic clamp with a bandwidth of >125 kHz that utilizes a high-performance, yet low-cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology and optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language.
View Article and Find Full Text PDFMutations in the GJB2 gene (Cx26) cause deafness in humans. Most are loss-of-function mutations and cause nonsyndromic deafness. Some mutations produce a gain of function and cause syndromic deafness associated with skin disorders, such as keratitis-ichthyosis-deafness syndrome (KIDS).
View Article and Find Full Text PDFIn vivo delivery of small interfering RNAs (siRNAs) to target cells via the extracellular space has been hampered by dilution effects and immune responses. Gap junction-mediated transfer between cells avoids the extracellular space and its associated limitations. Because of these advantages cell based delivery via gap junctions has emerged as a viable alternative for siRNA or miRNA delivery.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
October 2011
Background: After the recent cloning of light-sensitive ion channels and their expression in mammalian cells, a new field, optogenetics, emerged in neuroscience, allowing for precise perturbations of neural circuits by light. However, functionality of optogenetic tools has not been fully explored outside neuroscience, and a nonviral, nonembryogenesis-based strategy for optogenetics has not been shown before.
Methods And Results: We demonstrate the utility of optogenetics to cardiac muscle by a tandem cell unit (TCU) strategy, in which nonexcitable cells carry exogenous light-sensitive ion channels, and, when electrically coupled to cardiomyocytes, produce optically excitable heart tissue.
Am J Physiol Cell Physiol
March 2011
Gap junction channels formed by different connexins exhibit specific permeability to a variety of larger solutes including second messengers, polypeptides, and small interfering RNAs. Here, we report the permeability of homotypic connexin26 (Cx26), Cx40, Cx43, and Cx45 gap junction channels stably expressed in HeLa cells to solutes with different size and net charge. Channel permeability was determined using simultaneous measurements of junctional conductance and the cell-cell flux of a fluorescent probe.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
April 2010
Aqueous humor is formed by fluid transfer from the ciliary stroma sequentially across the pigmented ciliary epithelial (PE) cells, gap junctions, and nonpigmented ciliary epithelial (NPE) cells. Which connexins (Cx) contribute to PE-NPE gap junctional formation appears species specific. We tested whether small interfering RNA (siRNA) against Cx43 (siCx43) affects bovine PE-NPE communication and whether cAMP affects communication.
View Article and Find Full Text PDFWe examined whether coupling of a ventricular myocyte to a non-myocyte cell expressing HCN2 could create a two-cell syncytium capable of generating sustained pacing. Three non-myocyte cell types were transfected with the mHCN2 gene and used as sources of mHCN2-induced currents. They were human mesenchymal stem cells and HEK293 cells, both of which express connexin43 (Cx43), and HeLa cells transfected with Cx43.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2008
Intercellular communication is important for cochlear homeostasis because connexin26 (Cx26) mutations are the leading cause of hereditary deafness. Gap junctions formed by different connexins have unique selectivity to large molecules, so compensating for the loss of one isoform can be challenging in the case of disease causing mutations. We compared the properties of Cx26 mutants T8M and N206S with wild-type channels in transfected cells using dual whole cell voltage clamp and dye flux experiments.
View Article and Find Full Text PDFGap junction channels exhibit connexin dependent biophysical properties, including selective intercellular passage of larger solutes, such as second messengers and siRNA. Here, we report the determination of cyclic nucleotide (cAMP) permeability through gap junction channels composed of Cx43, Cx40, or Cx26 using simultaneous measurements of junctional conductance and intercellular transfer of cAMP. For cAMP detection the recipient cells were transfected with a reporter gene, the cyclic nucleotide-modulated channel from sea urchin sperm (SpIH).
View Article and Find Full Text PDFPurpose: To elucidate the basis of the autosomal dominant congenital nuclear cataracts caused by the connexin50 mutant, CX50R23T, by determining its cellular distribution and functional behavior and the consequences of substituting other amino acids for arginine-23.
Methods: Connexin50 (CX50) mutants were generated by PCR and transfected into HeLa or N2a cells. Expressed CX50 protein was detected by immunoblot analysis and localized by immunofluorescence.
Am J Physiol Cell Physiol
September 2007
Mutations in GJB2 and GJB6, the genes that encode the human gap junction proteins connexin26 (Cx26) and connexin30 (Cx30), respectively, cause hearing loss. Cx26 and Cx30 are both expressed in the cochlea, leading to the potential formation of heteromeric hemichannels and heterotypic gap junction channels. To investigate their interactions, we expressed human Cx26 and Cx30 individually or together in HeLa cells.
View Article and Find Full Text PDF