Publications by authors named "Valiante N"

For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state-of-the-art results in silico for the prediction of synergy scores. However, databases of drug combinations are biased toward synergistic agents and results do not generalize out of distribution.

View Article and Find Full Text PDF

Current therapies for anthrax include the use of antibiotics (i.e., doxycycline, and ciprofloxacin), an anthrax vaccine (BioThrax) and -specific, monoclonal antibody (mAb) (i.

View Article and Find Full Text PDF

Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists.

View Article and Find Full Text PDF

Although glycoconjugate vaccines are generally very efficacious, there is still a need to improve their efficacy, especially in eliciting a strong primary antibody response. We have recently described a new type of vaccine adjuvant based on a TLR7 agonist adsorbed to alum (Alum-TLR7), which is highly efficacious at enhancing immunogenicity of protein based vaccines. Since no adjuvant has been shown to potentiate the immune response to glycoconjugate vaccines in humans, we investigated if Alum-TLR7 is able to improve immunogenicity of this class of vaccines.

View Article and Find Full Text PDF

Small molecule Toll-like receptor 7 (TLR7) agonists have been used as vaccine adjuvants by enhancing innate immune activation to afford better adaptive response. Localized TLR7 agonists without systemic exposure can afford good adjuvanticity, suggesting peripheral innate activation (non-antigen-specific) is not required for immune priming. To enhance colocalization of antigen and adjuvant, benzonaphthyridine (BZN) TLR7 agonists are chemically modified with phosphonates to allow adsorption onto aluminum hydroxide (alum), a formulation commonly used in vaccines for antigen stabilization and injection site deposition.

View Article and Find Full Text PDF

Cross-presentation is the process by which professional APCs load peptides from an extracellularly derived protein onto class I MHC molecules to trigger a CD8(+) T cell response. The ability to enhance this process is therefore relevant for the development of antitumor and antiviral vaccines. We investigated a new TLR2-based adjuvant, Small Molecule Immune Potentiator (SMIP) 2.

View Article and Find Full Text PDF

Developing predictive animal models to assess how candidate vaccines and infection influence the ontogenies of Envelope (Env)-specific antibodies is critical for the development of an HIV vaccine. Here we use two nonhuman primate models to compare the roles of antigen persistence, diversity and innate immunity. We perform longitudinal analyses of HIV Env-specific B-cell receptor responses to SHIV(AD8) infection and Env protein vaccination with eight different adjuvants.

View Article and Find Full Text PDF

Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S.

View Article and Find Full Text PDF

Inhibition of the mammalian target of rapamycin (mTOR) pathway extends life span in all species studied to date, and in mice delays the onset of age-related diseases and comorbidities. However, it is unknown if mTOR inhibition affects aging or its consequences in humans. To begin to assess the effects of mTOR inhibition on human aging-related conditions, we evaluated whether the mTOR inhibitor RAD001 ameliorated immunosenescence (the decline in immune function during aging) in elderly volunteers, as assessed by their response to influenza vaccination.

View Article and Find Full Text PDF

Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically.

View Article and Find Full Text PDF

Nucleic acid-based vaccines such as viral vectors, plasmid DNA, and mRNA are being developed as a means to address a number of unmet medical needs that current vaccine technologies have been unable to address. Here, we describe a cationic nanoemulsion (CNE) delivery system developed to deliver a self-amplifying mRNA vaccine. This nonviral delivery system is based on Novartis's proprietary adjuvant MF59, which has an established clinical safety profile and is well tolerated in children, adults, and the elderly.

View Article and Find Full Text PDF

Background: Development of more effective therapies for genital herpes simplex virus type-2 (HSV-2) infections remains a priority. The toll-like receptors (TLR) are attractive targets for the immunomodulation of primary and recurrent genital herpes infection. The guinea pig model of genital HSV-2 disease was therefore used to evaluate the efficacy of a new TLR-7 agonist, SMIP-7.

View Article and Find Full Text PDF

In the 1960s, infant immunization with a formalin-inactivated respiratory syncytial virus (FI-RSV) vaccine candidate caused enhanced respiratory disease (ERD) following natural RSV infection. Because of this tragedy, intensive effort has been made to understand the root causes of how the FI-RSV vaccine induced a pathogenic response to subsequent RSV infection in vaccinees. A well-established cotton rat model of FI-RSV vaccine-enhanced disease has been used by numerous researchers to study the mechanisms of ERD.

View Article and Find Full Text PDF

Despite more than two decades of research and development on nucleic acid vaccines, there is still no commercial product for human use. Taking advantage of the recent innovations in systemic delivery of short interfering RNA (siRNA) using lipid nanoparticles (LNPs), we developed a self-amplifying RNA vaccine. Here we show that nonviral delivery of a 9-kb self-amplifying RNA encapsulated within an LNP substantially increased immunogenicity compared with delivery of unformulated RNA.

View Article and Find Full Text PDF

TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown.

View Article and Find Full Text PDF

TLR7 is the mammalian receptor for ssRNA and some nucleotide-like small molecules. We have generated a mouse by N-nitrose-N'-ethyl urea mutagenesis in which threonine 68 of TLR7 was substituted with isoleucine. Cells bearing this mutant TLR7 lost the sensitivity to the small-molecule TLR7 agonist resiquimod, hence the name TLR7(rsq1).

View Article and Find Full Text PDF

Despite their obvious benefits, decades of research and hundreds of pre-clinical candidates, only a handful of adjuvants are approved for prophylactic vaccination of humans. The slow pace of development is due to a number of knowledge gaps, the most important of which is the complexity involved in designing adjuvants that are both potent and well tolerated. Recent advances in our understanding of innate immunity have led to the identification of immune pathways and adjuvant formulations more suitable for clinical advancement.

View Article and Find Full Text PDF

Background & Aims: Hepatitis C virus (HCV) is remarkably successful in establishing persistent infections due to its ability to evade host immune responses through a combination of mechanisms including modulation of interferon (IFN) signalling in infected cells, interference with effector cell function of the immune system and continual viral genetic variation. We have previously demonstrated that natural killer (NK) cells can be inhibited in vitro by recombinant HCV glycoprotein E2 via cross-linking of CD81, a cellular co-receptor for the virus.

Methods: Taking advantage of the recently established tissue-culture system for HCV, we have studied the effects of CD81 engagement by the HCV envelope glycoprotein E2 when the protein is part of complete, infectious viral particles.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates how two main types of dendritic cells (myeloid and plasmacytoid) work together in responding to pathogens, revealing that they can enhance each other's activation.
  • - It was found that plasmacytoid dendritic cells alone don't respond well to whole bacteria but can mature and become active when cultured alongside myeloid dendritic cells.
  • - The findings suggest that pDCs play a supportive role in immune responses against bacterial infections, which could inform better vaccine strategies by targeting specific dendritic cell populations.
View Article and Find Full Text PDF

At an early phase of viral infection, contact and cooperation between dendritic cells (DCs) and NK cells activates innate immunity, and also influences recruitment, when needed, of adaptive immunity. Influenza, an adaptable fast-evolving virus, annually causes acute, widespread infections that challenge the innate and adaptive immunity of humanity. In this study, we dissect and define the molecular mechanisms by which influenza-infected, human DCs activate resting, autologous NK cells.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) binds to human cells through the interaction of its envelope glycoprotein E2 with the tetraspanin CD81. We have previously reported that engagement of CD81 has opposite effects on T and NK cell function, as it enhances T cell receptor-mediated T cell activation and inhibits CD16- or IL-12-mediated NK cell activation. We further investigated this dichotomy and found that another tetraspanin, CD82, induces the same opposing effects on human primary T and NK cells.

View Article and Find Full Text PDF

Despite two centuries of vaccine use, only a few adjuvants and delivery systems are licensed for human use. This is partly because traditional vaccines based on attenuated live organisms already have them--their invasiveness provides efficient delivery to antigen-presenting cells and various naturally occurring components of the pathogens stimulate the innate immune system. But consideration of these immune potentiators and delivery systems has become important to the development of new subunit vaccines consisting of isolated antigens.

View Article and Find Full Text PDF

Natural killer (NK) cells activate quickly in response to pathogens, tumors, and allogeneic hematopoietic cell transplants. Modulating the NK cell response are clonally distributed NK cell receptors that survey cells for change in the expression of major histocompatibility complex (MHC) class I and structurally related ligands. Here the enzyme-linked immunospot (ELISPOT) assay, intracellular cytokine staining (ICS), and short-term culture were used to quantify the response of bulk NK cell populations from human donors to HLA class I-deficient 221 cells and to 221 cells transfected with single HLA class I allotypes.

View Article and Find Full Text PDF