Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g.
View Article and Find Full Text PDFBiological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H production yield.
View Article and Find Full Text PDFAn attractive application of hydrogenases, combined with the availability of cheap and renewable hydrogen (i.e., from solar and wind powered electrolysis or from recycled wastes), is the production of high-value electron-rich intermediates such as reduced nicotinamide adenine dinucleotides.
View Article and Find Full Text PDFBackground: Bio-hydrogen production via dark fermentation of low-value waste is a potent and simple mean of recovering energy, maximising the harvesting of reducing equivalents to produce the cleanest fuel amongst renewables. Following several position papers from companies and public bodies, the hydrogen economy is regaining interest, especially in combination with circular economy and the environmental benefits of short local supply chains, aiming at zero net emission of greenhouse gases (GHG). The biomasses attracting the largest interest are agricultural and urban green wastes (pruning of trees, collected leaves, grass clippings from public parks and boulevards), which are usually employed in compost production, with some concerns over the GHG emission during the process.
View Article and Find Full Text PDF[FeFe]-hydrogenases are efficient H-catalysts, yet upon contact with dioxygen their catalytic cofactor (H-cluster) is irreversibly inactivated. Here, we combine X-ray crystallography, rational protein design, direct electrochemistry, and Fourier-transform infrared spectroscopy to describe a protein morphing mechanism that controls the reversible transition between the catalytic H-state and the inactive but oxygen-resistant H-state in [FeFe]-hydrogenase CbA5H of Clostridium beijerinckii. The X-ray structure of air-exposed CbA5H reveals that a conserved cysteine residue in the local environment of the active site (H-cluster) directly coordinates the substrate-binding site, providing a safety cap that prevents O-binding and consequently, cofactor degradation.
View Article and Find Full Text PDFBiotechnol Appl Biochem
September 2020
Dye-decolorizing peroxidases (DyP) were originally discovered in fungi for their ability to decolorize several different industrial dyes. DyPs catalyze the oxidation of a variety of substrates such as phenolic and nonphenolic aromatic compounds. Catalysis occurs in the active site or on the surface of the enzyme depending on the size of the substrate and on the existence of radical transfer pathways available in the enzyme.
View Article and Find Full Text PDFThe newly isolated Clostridium beijerinckii [FeFe]-hydrogenase CbA5H was characterized by Fourier transform infrared spectroscopy coupled to enzymatic activity assays. This showed for the first time that in this enzyme the oxygen-sensitive active state H can be simply and reversibly converted to the oxygen-stable inactive H state. This suggests that oxygen sensitivity is not an intrinsic feature of the catalytic center of [FeFe]-hydrogenases (H-cluster), opening new challenging perspectives on the oxygen sensitivity mechanism as well as new possibilities for exploitation in industrial applications.
View Article and Find Full Text PDFAromatase catalyses the conversion of androgens into estrogens and is a well-known target for breast cancer therapy. As it has been suggested that its activity is affected by inhibitors of phosphodiesterase-5, this work investigates the potential interaction of sildenafil with aromatase. This is carried out both at molecular level through structural and kinetics assays applied to the purified enzyme, and at cellular level using neuronal and breast cancer cell lines.
View Article and Find Full Text PDFBiohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses.
View Article and Find Full Text PDFBackground: Ar-BVMO is a recently discovered Baeyer-Villiger monooxygenase from the genome of Acinetobacter radioresistens S13 closely related to medically relevant ethionamide monooxygenase EtaA (prodrug activator) and capable of inactivating the imipenem antibiotic.
Methods: The co-substrate preference as well as steady-state and rapid kinetics studies of the recombinant purified protein were carried out using stopped-flow spectroscopy under anaerobic and aerobic conditions. Kd values were measured by isothermal calorimetry.
A conserved cysteine located in the signature motif of the catalytic center (H-cluster) of [FeFe]-hydrogenases functions in proton transfer. This residue corresponds to C298 in Clostridium acetobutylicum CaHydA. Despite the chemical and structural difference, the mutant C298D retains fast catalytic activity, while replacement with any other amino acid causes significant activity loss.
View Article and Find Full Text PDFThe expression of recombinant [FeFe]-hydrogenases is an important step for the production of large amount of these enzymes for their exploitation in biotechnology and for the characterization of the protein-metal cofactor interactions. The correct assembly of the organometallic catalytic site, named H-cluster, requires a dedicated set of maturases that must be coexpressed in the microbial hosts or used for in vitro assembly of the active enzymes. In this work, the effect of the post-induction temperature on the recombinant expression of CaHydA [FeFe]-hydrogenase in E.
View Article and Find Full Text PDFThe [FeFe]-hydrogenase CpHydA from Clostridium perfringens was immobilized by adsorption on anatase TiO2 electrodes for clean hydrogen production. The immobilized enzyme proved to perform direct electron transfer to and from the electrode surface and catalyses both H2 oxidation (H2 uptake) and H2 production (H2 evolution) with a current density for H2 evolution of about 2 mA cm(-1). The TiO2/CpHydA bioelectrode remained active for several days upon storage and when a reducing potential was set, H2 evolution occurred with a mean Faradaic efficiency of 98%.
View Article and Find Full Text PDFThis work reports for the first time the direct electron transfer of the Canis familiaris cytochrome P450 2D15 on glassy carbon electrodes to provide an analytical tool as an alternative to P450 animal testing in the drug discovery process. Cytochrome P450 2D15, that corresponds to the human homologue P450 2D6, was recombinantly expressed in Escherichia coli and entrapped on glassy carbon electrodes (GC) either with the cationic polymer polydiallyldimethylammonium chloride (PDDA) or in the presence of gold nanoparticles (AuNPs). Reversible electrochemical signals of P450 2D15 were observed with calculated midpoint potentials (E1/2) of −191 ± 5 and −233 ± 4 mV vs.
View Article and Find Full Text PDFBiotechnol Appl Biochem
January 2017
Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material.
View Article and Find Full Text PDFThis paper reports the first characterization of an [FeFe]-hydrogenase from a Clostridium perfringens strain previously isolated in our laboratory from a pilot-scale bio-hydrogen plant that efficiently produces H2 from waste biomasses. On the basis of sequence analysis, the enzyme is a monomer formed by four domains hosting various iron-sulfur centres involved in electron transfer and the catalytic center H-cluster. After recombinant expression in Escherichia coli, the purified protein catalyzes H2 evolution at high rate of 1645 ± 16 s(-1) .
View Article and Find Full Text PDFEnzymes entrapped in wet, nanoporous silica gel have great potential as bioreactors for bioremediation because of their improved thermal, chemical, and mechanical stability with respect to enzymes in solution. The B isozyme of catechol 1,2 dioxygenase from Acinetobacter radioresistens and its mutants of Leu69 and Ala72, designed for an increased reactivity toward the environmental pollutant chlorocatechols, were encapsulated using alkoxysilanes and alkyl alkoxysilanes as precursors in varying proportions. Encapsulation of the mutants in a hydrophobic tetramethoxysilane/dimethoxydimethylsilane-based matrix yielded a remarkable 10- to 12-fold enhancement in reactivity toward chlorocatechols.
View Article and Find Full Text PDFLaboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs.
View Article and Find Full Text PDFIntradiol dioxygenase are iron-containing enzymes involved in the bacterial degradation of natural and xenobiotic aromatic compounds. The wild-type and mutants forms of catechol 1,2-dioxygenase Iso B from Acinetobacter radioresistens LMG S13 have been investigated in order to get an insight on the structure-function relationships within this system. 4K CW-EPR spectroscopy highlighted different oxygen binding properties of some mutants with respect to the wild-type enzyme, suggesting that a fine tuning of the substrate-binding determinants in the active site pocket may indirectly result in variations of the iron reactivity.
View Article and Find Full Text PDF