Quantum dots tuned to atomic resonances represent an emerging field of hybrid quantum systems where the advantages of quantum dots and natural atoms can be combined. Embedding quantum dots in nanowires boosts these systems with a set of powerful possibilities, such as precise positioning of the emitters, excellent photon extraction efficiency and direct electrical contacting of quantum dots. Notably, nanowire structures can be grown on silicon substrates, allowing for a straightforward integration with silicon-based photonic devices.
View Article and Find Full Text PDFWe report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.
View Article and Find Full Text PDFThe spatial structure of light with Orbital Angular Momentum, or "twisted light", closely resembles the shape of atomic wave functions. It could therefore make symmetry-forbidden transitions possible in quantum dots, or "artificial atoms". However, the vanishing intensity in the center of an OAM beam usually makes this effect weak.
View Article and Find Full Text PDFSurface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors.
View Article and Find Full Text PDFWe propose and develop a readout scheme for superconducting single-photon detectors based on an integrated circuit, relaxing the need for large bandwidth amplification and resulting in voltage steps proportional to the number of detected photons. We also demonstrate time gating, to filter scattered light in time and reduce dark counts. This could lead to a higher signal-to-noise ratio.
View Article and Find Full Text PDFDirect monitoring of singlet oxygen (¹O₂) luminescence is a particularly challenging infrared photodetection problem. ¹O₂, an excited state of the oxygen molecule, is a crucial intermediate in many biological processes. We employ a low noise superconducting nanowire single-photon detector to record ¹O₂ luminescence at 1270 nm wavelength from a model photosensitizer (Rose Bengal) in solution.
View Article and Find Full Text PDFSurface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides.
View Article and Find Full Text PDFWe report on the fabrication by Au-assisted molecular beam epitaxy of InP nanowires with embedded InAsP insertions. The growth temperature affects the nucleation on the nanowire lateral surface. It is therefore possible to grow the wires in two steps: to fabricate an axial heterostructure (at 420 degrees C), and then cover it by a shell (at 390 degrees C).
View Article and Find Full Text PDFWe report reproducible fabrication of InP-InAsP nanowire light-emitting diodes in which electron-hole recombination is restricted to a quantum-dot-sized InAsP section. The nanowire geometry naturally self-aligns the quantum dot with the n-InP and p-InP ends of the wire, making these devices promising candidates for electrically driven quantum optics experiments. We have investigated the operation of these nanoLEDs with a consistent series of experiments at room temperature and at 10 K, demonstrating the potential of this system for single photon applications.
View Article and Find Full Text PDFWe fabricate and demonstrate optically active quantum dots embedded in single nanowires. Observation of photon antibunching proves the zero dimensionality of these heterostructures that can be epitaxially grown on various substrates, including silicon. We show that the nanowire dots are intense single photon sources, typically an order of magnitude brighter than self-assembled quantum dots.
View Article and Find Full Text PDF