Publications by authors named "Valery V Belousov"

Copper and its alloys with transition metals (as good conductors of electricity and heat) are extensively used in electrical industry, electronics, and cooling systems and can be the subject of surface degradation by oxidation. In certain circumstances, surface degradation of copper occurs catastrophically. Predicting catastrophic oxidation kinetics and developing protective technology require understanding the mass transfer mechanisms in the solid/liquid/gas composite scale formed on the copper surface during catastrophic degradation.

View Article and Find Full Text PDF

Bubbles are extensively explored as gas and energy carriers. However, despite notable progress, the bubble transport mechanisms are still poorly understood. At the present time there is not sufficient understanding of whether the body or surface forces play a major role in bubble transport in liquid interfacial systems.

View Article and Find Full Text PDF

Oxygen transport membranes are considered important devices in future separation processes associated with energy, environmental, and biomedicine. Innovative core-shell structured diffusion-bubbling membranes (DBM) with high oxygen permeability and theoretically infinite selectivity are promising candidates for efficient oxygen separation from air. The combined diffusion-bubbling oxygen mass transport allows a substantial degree of flexibility in membrane material design.

View Article and Find Full Text PDF

Oxygen-selective membranes are likely to play a leading part in the future separation processes relevant to energy engineering. A newly developed molten copper and vanadium oxide-based diffusion-bubbling membrane with core-shell structure and fast combined oxygen mass transfer is a promising candidate for efficient oxygen separation. In this work, the oxygen bubble nucleation and transport properties of the diffusion-bubbling membrane were experimentally and theoretically studied.

View Article and Find Full Text PDF

Oxygen is the second-largest-volume industrial gas that is mainly produced using cryogenic air separation. However, the state-of-the-art cryogenic technology thermodynamic efficiency has approached a theoretical limit as near as is practicable. Therefore, there is stimulus to develop an alternative technology for efficient oxygen separation from air.

View Article and Find Full Text PDF

Mixed ionic-electronic conducting (MIEC) membranes attract the attention because of their high potential for oxygen separation and energy conversion applications. The different fabrication methods of asymmetric membranes consisting of a thin MIEC layer on porous support were developed. The basically dense but not completely hermetic thin layers were achieved.

View Article and Find Full Text PDF

High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials.

View Article and Find Full Text PDF

We present a novel solid/liquid Co3O4-36 wt % Bi2O3 composite that can be used as molten oxide membrane, MOM ( Belousov, V. V. Electrical and Mass Transport Processes in Molten Oxide Membranes.

View Article and Find Full Text PDF