Vector Borne Zoonotic Dis
August 2010
Background: Hantaviral antigens were originally reported more than 20 years ago in tissues of the Eurasian common shrew (Sorex araneus), captured in European and Siberian Russia. The recent discovery of Seewis virus (SWSV) in this soricid species in Switzerland provided an opportunity to investigate its genetic diversity and geographic distribution in Russia.
Methods: Lung tissues from 45 Eurasian common shrews, 4 Laxmann's shrews (Sorex caecutiens), 3 Siberian large-toothed shrews (Sorex daphaenodon), 9 pygmy shrews (Sorex minutus), 28 tundra shrews (Sorex tundrensis), and 6 Siberian shrews (Crocidura sibirica), captured in 11 localities in Western and Eastern Siberia during June 2007 to September 2008, were analyzed for hantavirus RNA by reverse transcription-polymerase chain reaction.
The data on the structure of the M genome segment of CCHF virus strains from Russia and Central Asia (Tajikistan) are presented. Data obtained have been compared with other available published sequences of the middle segment of strains from China, Nigeria, and Pakistan. It has been found that all the known strains can be divided into four genetic groups, based on the nucleotide sequence of the M genome segment and an amino acid sequence of the glycoprotein precursor it encodes, whereas VLG/TI29414 and STV/HU29223 strains from Russia form a separate group.
View Article and Find Full Text PDFHyalomma marginatum ticks (449 pools, 4787 ticks in total) collected in European Russia and Dermacentor niveus ticks (100 pools, 1100 ticks in total) collected in Kazakhstan were screened by ELISA for the presence of Crimean-Congo haemorrhagic fever virus (CCHFV). Virus antigen was found in 10.2 and 3.
View Article and Find Full Text PDFGenetic analysis of wild-type Crimean-Congo hemorrhagic fever (CCHF) virus strains recovered in the European part of Russia was performed. Reverse transcriptase PCR followed by direct sequencing was used to recover partial sequences of the CCHF virus medium (M) genome segment (M segment) from four pools of Hyalomma marginatum ticks and six human patients. Phylogenetic analysis of the M-segment sequences from Russian strains revealed a close relatedness of the strains (nucleotide sequence diversity,