Animal models of Parkinson's disease (PD) have been widely used to investigate the pathogenesis of this neurodegenerative disorder which is typically associated with the specific and largely disordered protein α-synuclein (α-syn). In the current study, the nasal vector was used to deliver α-syn aggregates to the brain. Both α-syn oligomers and its fibrils were firstly characterized using atomic force microscopy and the thioflavin T binding assay.
View Article and Find Full Text PDFObjective: Protein aggregation leading to central amyloid deposition is implicated in Parkinson's disease (PD). During disease progression, inflammation and oxidative stress may well invoke humoral immunity against pathological aggregates of PD-associated α-synuclein. The aim was to investigate any possible concurrence between autoimmune responses to α-synuclein monomers, oligomers or fibrils with oxidative stress and inflammation.
View Article and Find Full Text PDFThe aim was to ascertain any possible linkage between humoral immune responses to principal biomarkers (α-synuclein monomers, its toxic oligomers or fibrils, dopamine and S100B) and cellular immunity in Parkinson's disease development. There were elevated autoantibody titers to α-synuclein monomers, oligomers plus fibrils in 72%, 56%, and 17% of Parkinsonian patients respectively with a 5-year disease duration. Additionally, there were increased titers to dopamine and S100B (96% and 89%) in the 5-year patient group.
View Article and Find Full Text PDF