Freshwater mussels are experiencing severe population declines, affecting their critical role in freshwater ecosystems. A thorough assessment of threats posed by various stressors is needed; however, the large number of species to be considered and significant data gaps, especially for listed species, hinder the process. We combined a traits-based approach to represent multiple species grouped into three life-history categories - Equilibrium, Opportunistic, and Periodic - with the Dynamic Energy Budget modeling principles to capture the physiological mechanisms driving individual-level responses.
View Article and Find Full Text PDFThe use of mechanistic population models as research and decision-support tools in ecology and ecological risk assessment (ERA) is increasing. This growth has been facilitated by advances in technology, allowing the simulation of more complex systems, as well as by standardized approaches for model development, documentation, and evaluation. Mechanistic population models are particularly useful for simulating complex systems, but the required model complexity can make them challenging to communicate.
View Article and Find Full Text PDFUnder standard guidance for conducting Ecological Risk Assessments (ERAs), the risks of chemical exposure to diverse organisms are most often based on deterministic point estimates evaluated against safety-factor-based levels of concern (LOCs). While the science and guidance for mechanistic effect models (e.g.
View Article and Find Full Text PDFIntegr Environ Assess Manag
November 2022
Lake sturgeon (Acipenser fulvescens) populations have significantly declined across their historic range, in large part due to anthropogenic impacts that have likely been exacerbated by the life-history traits of this slow-growing and long-lived species. We developed a population model to explore how Contaminants of Emerging Concern (CECs) impact lake sturgeon populations. We explored how different physiological modes of action (pMoAs) of CECs impacted population abundance and recovery and how different simulated management actions could enable recovery.
View Article and Find Full Text PDFAquatic sediments are predicted to be an important sink for released silver nanoparticles (AgNPs). Knowing the long-term effects of AgNPs on benthic deposit-feeders is therefore an important step towards assessing their potential environmental risks. The aim of this study was to examine the effects on survival, growth and reproduction of the deposit-feeding polychaete Capitella teleta exposed for ten weeks to sediment-associated un-coated AgNPs or silver nitrate (AgNO).
View Article and Find Full Text PDFSci Total Environ
February 2022
Capitella teleta, a marine polychaete that feeds on a refractory diet consisting of sediment, was shown to contain unique gut microbiota comprised of microbial functional groups involved in fermentation. Results of our previous studies showed that C. teleta's core gut microbiota were dominated by propionibacteria, and that these bacteria were more abundant in worms than in sediment and feces.
View Article and Find Full Text PDFContaminants of emerging concern (CECs) are ubiquitous, present in complex chemical mixtures, and represent a threat to the Great Lake ecosystem. Mitigation strategies are needed to protect populations of key species, but knowledge about ecological and biological effects of CECs at the population level are limited. In this study, we combined laboratory data on CEC effects at the individual-level with in-situ CEC concentration data in a walleye (Sander vitreus) population model to simulate the effectiveness of different CEC mitigation strategies in the Maumee River and Lake Erie.
View Article and Find Full Text PDFUnderstanding the interactions among multiple stressors is a crucial issue for ecological risk assessment and ecosystem management. However, it is often impractical, or impossible, to collect empirical data concerning all the interactions at any scale because the type of interaction differs across species and levels of biological organization. We applied an agent-based model to simulate the effects of a hypothetical chemical stressor and inter-specific competition (both alone and together) on greenback cutthroat trout (GCT), a listed species under the US Endangered Species Act, in two temperature scenarios.
View Article and Find Full Text PDFDeposit-feeding benthic invertebrates are known to modify sediment structure and impact microbial processes associated with biogeochemical cycles in marine sedimentary environments. Despite this, however, there is limited information on how sediment ingestion and defecation by marine benthos alters microbial community structure and function in sediments. In the current study, we used high-throughput sequencing data of 16S rRNA genes obtained from a previous microcosm study to examine how sediment processing by the marine polychaete Capitella teleta specifically affects sediment microbiota.
View Article and Find Full Text PDFPopulation models can provide valuable tools for ecological risk assessment (ERA). A growing amount of work on model development and documentation is now available to guide modelers and risk assessors to address different ERA questions. However, there remain misconceptions about population models for ERA, and communication between regulators and modelers can still be hindered by a lack of clarity in the underlying formalism, implementation, and complexity of different model types.
View Article and Find Full Text PDFEcosystem services (ES) are the benefits that people obtain from ecosystems. Investigating the environment through an ES framework has gained wide acceptance in the international scientific community and is applied by policymakers to protect biodiversity and safeguard the sustainability of ecosystems. This approach can enhance the ecological and societal relevance of pre-market/prospective environmental risk assessments (ERAs) of regulated stressors by: (1) informing the derivation of operational protection goals; (2) enabling the integration of environmental and human health risk assessments; (3) facilitating horizontal integration of policies and regulations; (4) leading to more comprehensive and consistent environmental protection; (5) articulating the utility of, and trade-offs involved in, environmental decisions; and (6) enhancing the transparency of risk assessment results and the decisions based upon them.
View Article and Find Full Text PDFUncertainty in risks posed by emerging stressors such as synthetic hormones impedes conservation efforts for threatened vertebrate populations. Synthetic hormones often induce sex-biased perturbations in exposed animals by disrupting gonad development and early life-history stage transitions, potentially diminishing per capita reproductive output of depleted populations and, in turn, being manifest as Allee effects. We use a spatially explicit biophysical model to evaluate how sex-biased perturbation in life-history traits of individuals (maternal investment in egg production and male-skewed sex allocation in offspring) modulates density feedback control of year-class strength and recovery trajectories of a long-lived, migratory fish-shovelnose sturgeon ()-under spatially and temporally dynamic synthetic androgen exposure and habitat conditions.
View Article and Find Full Text PDFCapitella teleta is a marine sediment-feeding polychaete known to degrade various polycyclic aromatic hydrocarbons (PAHs) and reported to possess genes involved in PAH transformation, such as those in the P450 cytochrome superfamily. Previous research focusing on biodegradation of PAHs by C. teleta demonstrated that these worms are effective biodegraders, but overlooked the possible role of its gut microbiota in facilitating PAH metabolism.
View Article and Find Full Text PDFIn this paper, we applied an individual-based model to study the population-level impacts of sub-lethal stressors affecting the metabolic pathways of three closely related trout species: Oncorhynchus mykiss (rainbow trout, RT), Salmo trutta (brown trout, BT) and Oncorhynchus calrki stomias (greenback cutthroat trout, GCT). Both RT and BT are well-studied species, and the former is widely used as a standard cold-water test species. These species are known to outcompete GCT, which is listed as threatened under the US Endangered Species Act.
View Article and Find Full Text PDFAssessing and managing risks of anthropogenic activities to ecological systems is necessary to ensure sustained delivery of ecosystem services for future generations. Ecological models provide a means of quantitatively linking measured risk assessment endpoints with protection goals, by integrating potential chemical effects with species life history, ecological interactions, environmental drivers and other potential stressors. Here we demonstrate how an ecosystem modeling approach can be used to quantify insecticide-induced impacts on ecosystem services provided by a lake from toxicity data for organism-level endpoints.
View Article and Find Full Text PDFCapitella teleta is a sediment-dwelling marine polychaete that is often found in high densities in association with organic matter and pollutants. While C. teleta has been reported to transform a variety of aromatic hydrocarbons, the mechanisms by which degradation occurs are unknown.
View Article and Find Full Text PDFSci Total Environ
February 2019
Hypoxia in aquatic ecosystems is often a result of anthropogenic activities, such as increased nutrient loading, originating from agriculture or urbanization, as well as global warming. Aquatic invertebrates are especially important in ecosystems due to their central role in secondary production and in dynamics of food webs. To better understand impacts of oxygen availability on key physiological processes in invertebrates, we conducted a literature search and synthesized the findings of published studies.
View Article and Find Full Text PDFWe demonstrate how mechanistic modeling can be used to predict whether and how biological responses to chemicals at (sub)organismal levels in model species (i.e., what we typically measure) translate into impacts on ecosystem service delivery (i.
View Article and Find Full Text PDFEcosystems are exposed to multiple stressors which can compromise functioning and service delivery. These stressors often co-occur and interact in different ways which are not yet fully understood. Here, we applied a population model representing a freshwater amphipod feeding on leaf litter in forested streams.
View Article and Find Full Text PDFEnviron Sci Technol
February 2018
Integr Environ Assess Manag
January 2018
Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks.
View Article and Find Full Text PDF