During the nanowire (NW) formation, the growth steps reaching the crystallization front (CF) under the catalytic drop are either absorbed by the three-phase line or accumulated in front of it, curving the surface of the front. In this paper, we have analyzed the conditions leading to a change of shape of the crystallization front of the NWs under the catalyst drop as well as the reasons for the formation of atomically smooth (singular) and curved (nonsingular) regions. A model explaining the curvature of the crystallization front under the drop in the process of NW growth is proposed.
View Article and Find Full Text PDFNanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.
View Article and Find Full Text PDF