Catheter-related biofilm infection remains the main problem for millions of people annually, affecting morbidity, mortality, and quality of life. Despite the recent advances in the prevention of biofilm formation, alternative methods for biofilm prevention or eradication still should be found to avoid traumatic and expensive removal or catheter replacement. Soft magnetic robots have drawn significant interest in favor of remote control, fast response, and wide space for design.
View Article and Find Full Text PDFBiofilms are the reason for a vast majority of chronic inflammation cases and most acute inflammation. The treatment of biofilms still is a complicated task due to the low efficiency of drug delivery and high resistivity of the involved bacteria to harmful factors. Here we describe a magnetically controlled nanocomposite with a stimuli-responsive release profile based on calcium carbonate and magnetite with an encapsulated antibiotic (ciprofloxacin) that can be used to solve this problem.
View Article and Find Full Text PDFBiofilm-related diseases contribute to patient morbidity, increased mortality and represent a considerable economic burden. Despite numerous developments in the field of combating biofilms, the most effective treatment method is still the mechanical removal of biofilms or the replacement of a device overgrown with biofilm. Given that the main challenges are the mechanical stability of biofilms, low penetration of biocides and the persistence of cells with reduced metabolic status in them, a promising direction is the use of magnetically controlled materials for their treatment.
View Article and Find Full Text PDF