Publications by authors named "Valeriy Bacherikov"

Over the past 55 years of research, various experimental methods have been developed for the total synthesis of the anticancer camptothecin, a potent antitumor antibiotic, and its numerous active derivatives. The discoveries made in synthetic pathways of the camptothecin heterocyclic core have contributed significantly to the theory and strategy of directed organic synthesis aimed at finding effective anticancer drugs. The synthetic, medicinal chemistry of camptothecin, the development of structures of anticancer camptothecin analogues, and the mechanism of their activity in inhibiting the growth of different types of cancers, such as lung, ovarian, breast, pancreas, and stomach cancers are analyzed.

View Article and Find Full Text PDF

A new series of peptidomimetic N-substituted Cbz-4-Hyp-Hpa-amides were designed, synthesized, and evaluated for inhibition of the Plasmodium falciparum. Substituents on the N-atom of the amide group were selected alkyl-, allyl-, aryl-, 2-hydroxyethyl-, 2-cyanoethyl-, cyanomethyl-, 2-hydroxyethyl-, 2,2-diethoxyethyl-, or 2-ethoxy-2-oxoethylamino groups, and about of 40 new compounds were synthesized and evaluated for antiplasmodial activity in vitro. Antimalarial activity has been investigated as for the final peptide mimetics, and their immediate predecessors, carrying TBDMS or TBDPS protecting groups on 4-hydroxyproline residue and 18 derivatives exhibited toxicity against P.

View Article and Find Full Text PDF

An overview of a little-known method, which was discovered by Dr. Alexander S. Samokhotskiy, for treatment of gangrenous, traumatic, and postoperative inflammation, sepsis and some other diseases, was represented.

View Article and Find Full Text PDF

A series of 9-anilinoacridine and acridine derivatives bearing an alkylating N-mustard residue at C4 of the acridine chromophore were synthesized. The N-mustard pharmacophore was linked to the C4 of the acridine ring with an O-ethyl (O-C(2)), O-propyl (O-C(3)), or O-butyl (O-C(4)) spacer. It revealed that all newly synthesized compounds were very potent cytotoxic agents against human leukemia and various solid tumors in vitro.

View Article and Find Full Text PDF

A series of 5-(9-acridinylamino)anisidines were synthesized by condensing methoxy-substituted 1,3-phenylenediamines (10 and 11) with 9-chloroacridine derivatives to form 5-(9-acridinylamino)-m-anisidines (AMAs, 14a-e) and 5-(9-acridinylamino)-o-anisidines (AOAs, 15a-e). 5-(9-Acridinylamino)-p-anisidines (APAs, 17a-e) were synthesized by reacting 2-methoxy-5-nitroaniline (12) with 9-anilinoacridines, followed by reduction. The cytotoxic inhibition of growth of various human tumor cells in culture, inhibitory effects against topoisomerase II, and DNA interaction of these agents were studied.

View Article and Find Full Text PDF

A series of N-mustard derivatives of 9-anilinoacridine was synthesized for antitumor and structure-activity relationship studies. The alkylating N-mustard residue was linked to the C-3' or C-4' position of the anilino ring with an O-ethylene (O-C(2)), O-butylene (O-C(4)), and methylene (C(1)) spacer. All of the new N-mustard derivatives exhibited significant cytotoxicity in inhibiting human lymphoblastic leukemic cells (CCRF-CEM) in culture.

View Article and Find Full Text PDF

A series of 9-anilinoacridine N-mustard derivatives, in which the alkylating N-mustard residue was linked to the C-3' or C-4' position of the anilino ring with an O-ethylene spacer, was synthesized and evaluated for cytotoxicity against human lymphoblastic leukemic cells (CCRF-CEM) in culture. The results showed that all of the new compounds exhibited potent cytotoxicity with IC(50) values ranging from 0.002 to 0.

View Article and Find Full Text PDF

A series of new analogues of 3-(9-acridinylamino)-5-hydroxymethylaniline (AHMA, 1) and AHMA-ethylcarbamate (2) were synthesized by introducing an O-alkylcarboxylic acid esters to the CH(2)OH function, displacing the CH(2)OH function with a dimethylaminocarboxamido group or with a methyl function introduced at the meta-, para- or ortho-position to the NH(2) group to form 5-(9-acridinylamino)-m-toluidines (AMTs), 5-(9-acridinylamino)-p-toluidines (APTs) or 5-(9-acridinylamino)-o-toluidines (AOTs), respectively. The inhibitions of a variety of human tumor cell growth, interactions with DNA as well as inhibitory effect against topoisomerase II (Topo II) of these new agents were studied. Among AMT, APT and AOT derivatives with dimethylaminoethylcarboxamido and Me at C4 and C5 of acridine moiety (i.

View Article and Find Full Text PDF

A series of non-classical antifolates, namely 5-(N-phenylpyrrolidin-3-yl)-2,4,6-triaminopyrimidines (25a-i) and 2,4-diamino-(N-phenylpyrrolidin-3-yl)-6(5H)-oxopyrimidines (26a,b,c,f,h,i) was synthesized and evaluated for their in vitro cytotoxicity. Reacting aniline derivatives with 1,4-dibromo-2-butanol gave 1-phenyl-3-pyrrolidinols (19a--i), which were oxidized to pyrrolidin-3-ones (20a-i). The Knoevenagel reaction of 20a-i with malononitrile or ethyl cyanoacetate gave 3-(dicyanomethylene)- (21a-i) and 3-[cyano(ethoxycarbonyl)methylene]-pyrrolidines (22a,b,c,f,h,i), respectively, which were subsequently reduced to the corresponding 3-(dicyano)methyl- or 3-[cyano(ethoxycarbonyl)methyl)]pyrrolidines (23a-i and 24a,b,c,f,h,i, respectively).

View Article and Find Full Text PDF