Publications by authors named "Valeriy Artyukhov"

Chitosan takes second place of the most abundant polysaccharides naturally produced by living organisms. Due to its abundance and unique properties, such as its polycationic nature, ability to form strong elastic porous films, and antibacterial potential, it is widely used in the food industry and biomedicine. However, its low solubility in both water and organic solvents makes its application difficult.

View Article and Find Full Text PDF

The investigation into the behavior of ficin, bromelain, papain under thermal conditions holds both theoretical and practical significance. The production processes of medicines and cosmetics often involve exposure to high temperatures, particularly during the final product sterilization phase. Hence, it's crucial to identify the "critical" temperatures for each component within the mixture for effective technological regulation.

View Article and Find Full Text PDF

In the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa.

View Article and Find Full Text PDF

This study investigates the features of interactions between cysteine proteases (bromelain, ficin, and papain) and a graft copolymer of carboxymethyl cellulose sodium salt with -vinylimidazole. The objective is to understand the influence of this interactions on the proteolytic activity and stability of the enzymes. The enzymes were immobilized through complexation with the carrier.

View Article and Find Full Text PDF

The present work is devoted to research on the interaction between carboxymethyl cellulose sodium salt and its derivatives (graft copolymer of carboxymethyl cellulose sodium salt and ,-dimethyl aminoethyl methacrylate) with cysteine protease (ficin). The interaction was studied by FTIR and by flexible molecular docking, which have shown the conjugates' formation with both matrices. The proteolytic activity assay performed with azocasein demonstrated that the specific activities of all immobilized ficin samples are higher in comparison with those of the native enzyme.

View Article and Find Full Text PDF

Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, -(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and -(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively).

View Article and Find Full Text PDF

Briefly, 2-(4-Acetamido-2-sulfanilamide) chitosan, which is a chitosan water-soluble derivative, with molecular weights of 200, 350, and 600 kDa, was successfully synthesized. The immobilization of ficin, papain, and bromelain was carried out by complexation with these polymers. The interaction mechanism of 2-(4-acetamido-2-sulfanilamide) chitosan with bromelain, ficin, and papain was studied using FTIR spectroscopy.

View Article and Find Full Text PDF

Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.

View Article and Find Full Text PDF

Bromelain, papain, and ficin are studied the most for meat tenderization, but have limited application due to their short lifetime. The aim of this work is to identify the adsorption mechanisms of these cysteine proteases on chitosan to improve the enzymes' stability. It is known that immobilization can lead to a significant loss of enzyme activity, which we observed during the sorption of bromelain (protease activity compared to soluble enzyme is 49% for medium and 64% for high molecular weight chitosan), papain (34 and 28% respectively) and ficin (69 and 70% respectively).

View Article and Find Full Text PDF

Biofouling is among the key factors slowing down healing of acute and chronic wounds. Here we report both anti-biofilm and wound-healing properties of the chitosan-immobilized Ficin. The proposed chitosan-adsorption approach allowed preserving ~90% of the initial total activity of the enzyme (when using azocasein as a substrate) with stabilization factor of 4.

View Article and Find Full Text PDF

Our research has shown that the degree of photosensitivity of the cysteine proteases can be arranged in the following order: bromelain → ficin → papain. After the UV irradiation with 151 J·m intensity of a bromelain solution, the enzyme activity has increased. No decrease in the catalytic capacity and the change in the size of the molecule was recorded in the 151-6040 J·m range of irradiation intensities.

View Article and Find Full Text PDF

The Dps protein of , which combines ferroxidase activity and the ability to bind DNA, is effectively used by bacteria to protect their genomes from damage. Both activities depend on the integrity of this multi-subunit protein, which has an inner cavity for iron oxides; however, the diversity of its oligomeric forms has only been studied fragmentarily. Here, we show that iron ions stabilize the dodecameric form of Dps.

View Article and Find Full Text PDF

Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses. Biofilm-embedded bacteria are generally inaccessible for antimicrobials, therefore the disruption of biofilm matrix is the potent approach to eradicate microbial biofilms. We demonstrate here the destruction of Staphylococcus aureus and Staphylococcus epidermidis biofilms with Ficin, a nonspecific plant protease.

View Article and Find Full Text PDF