Development of new antibacterial materials for solving biomedical problems is an extremely important and very urgent task. This review aims to summarize recent articles (from the last five and mostly the last three years) on the nanoparticle/polymer composites for biomedical applications. Articles on polymeric nanoparticles (NPs) and hydrogel-based systems were not reviewed, since we focused our attention mostly on the composites of polymeric matrix with at least one inorganic filler in the form of NPs.
View Article and Find Full Text PDFThe process of laser-induced breakdown of amorphous and crystalline selenium nanoparticles (Se NPs) of various shapes during nanosecond laser fragmentation of aqueous colloidal solutions of nanoparticles with different concentrations has been studied. The methods of studying the characteristics of plasma and acoustic oscillations induced by optical breakdown are applied. The methods of assessing the concentration of hydrogen peroxide and hydroxyl radicals, the amount of long-lived reactive species of protein and 8-oxoguanine are applied.
View Article and Find Full Text PDFThe peculiarities of crystal growth on a Nafion polymeric substrate from supersaturated aqueous solutions of initial substances were studied. The solutions were prepared based on deionized natural water and deuterium-depleted water. As was found earlier, in natural water (deuterium content 157 ± 1 ppm) polymer fibers are capable of unwinding towards the bulk of the liquid, while in deuterium-depleted water (deuterium content ≤ 3 ppm) there is no such effect.
View Article and Find Full Text PDFAs was found in our previous works, when Nafion swells in water, polymer fibers unwind into the bulk of the surrounding liquid. This effect is controlled by the content of deuterium in water. Here, we present the results of studying the dynamics of methylene blue (MB) adsorption on the Nafion surface for MB solutions based on natural water (deuterium content is 157 ppm, the unwinding effect occurs) and based on deuterium-depleted water (DDW; deuterium content is 3 ppm, there is no unwinding).
View Article and Find Full Text PDFThe temporal dynamics of luminescence from the surface of Nafion polymer membranes have been studied. In fact, the polymer membrane was soaked in liquids with different contents of deuterium. The test liquids were ordinary (natural) water (deuterium content equal to 157 ppm) and deuterium-depleted water (deuterium content is equal to 3 ppm).
View Article and Find Full Text PDFWhen a membrane of Nafion swells in water, polymer fibers "unwind" into the adjoining liquid. They extend to a maximum of about ~300 μm. We explore features of Nafion nanostructure in several electrolyte solutions that occur when the swelling is constrained to a cell of size less than a distance of 300 μm.
View Article and Find Full Text PDFPhotoluminescence from the surface of a Nafion polymer membrane upon swelling in isotonic aqueous solutions and Milli-Q water has been studied. Liquid samples were preliminarily processed by electric pulses with a duration of 1 μs and an amplitude of 0.1 V using an antenna in the form of a flat capacitor; experiments on photoluminescent spectroscopy were carried out 20 min after this treatment.
View Article and Find Full Text PDFIn photoluminescence spectroscopy experiments, the interaction mode of the polymer membrane Nafion with various amino-acids was studied. The experiments were performed with physiological NaCl solutions prepared in an ordinary water (the deuterium content is 157 ± 1 ppm) and also in deuterium-depleted water (the deuterium content is ≤1 ppm). These studies were motivated by the fact that when Nafion swells in ordinary water, the polymer fibers are effectively "unwound" into the liquid bulk, while in the case of deuterium-depleted water, the unwinding effect is missing.
View Article and Find Full Text PDFThe swelling of a polymer membrane Nafion in deionized water and isotonic NaCl and Ringer's solutions was studied by photoluminescent spectroscopy. According to our previous studies, the surface of this membrane could be considered as a model for a cellular surface. Liquid samples, in which the membrane was soaked, were subjected to preliminary electromagnetic treatment, which consisted of irradiating these samples with electric rectangular pulses of 1 µs duration using platinum electrodes immersed in the liquid.
View Article and Find Full Text PDFWhen Nafion swells in water, colloidal particles are repelled from the polymer surface; this effect is called the formation exclusion zone (EZ), and the EZ size amounts to several hundred microns. However, still no one has investigated the EZ formation in a cell whose dimension is close to the EZ size. It was also shown that, upon swelling in water, Nafion fibers "unwind" into the water bulk.
View Article and Find Full Text PDFStructural characterization by three complementary methods of laser diagnostics (dynamic light scattering, laser phase microscopy, and laser polarimetric scatterometry) has established that shaking of immunoglobulin G (IgG) dispersions in water and ethanol-water mixtures (36.7 vol %) results in two effects. First, it intensifies the aggregation of IgG macromolecules.
View Article and Find Full Text PDFExperiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8-2.
View Article and Find Full Text PDFIn our recent work [Bunkin et al. Water 2013, 4, 129-154] it was first obtained that the water layer, having a size of several tens of micrometers and being adjacent to the swollen Nafion interface, is characterized by enhanced optical density; the refractive index of water at the interface is 1.46.
View Article and Find Full Text PDF