The rapid evolution of image processing equipment and techniques ensures the development of novel picture analysis methodologies. One of the most powerful yet computationally possible algebraic techniques for measuring the topological characteristics of functions is persistent homology. It's an algebraic invariant that can capture topological details at different spatial resolutions.
View Article and Find Full Text PDFInfrared spectroscopy provides useful information on the molecular compositions of biological systems related to molecular vibrations, overtones, and combinations of fundamental vibrations. Mid-infrared (MIR) spectroscopy is sensitive to organic and mineral components and has attracted growing interest in the development of biomarkers related to intrinsic characteristics of lignocellulose biomass. However, not all spectral information is valuable for biomarker construction or for applying analysis methods such as classification.
View Article and Find Full Text PDFMid-infrared (MIR) and near-infrared (NIR) spectroscopy provide useful information on the molecular composition of biological systems. Because they are sensitive to organic and mineral components, there is a growing interest in these techniques for the development of biomarkers that reflect intrinsic characteristics of plants and their mode of degradation. Due to their complexity and complementary nature, an important challenge is the combining of MIR and NIR information to identify discriminating wavenumbers in each wavenumber region, with the ultimate goal of assessing the biodegradation process of a lignocellulosic biomass at different time scales.
View Article and Find Full Text PDFThis study aims to develop a new FT-IR spectral imaging of tumoral tissue permitting a better characterization of tumor heterogeneity and tumor/surrounding tissue interface. Infrared (IR) data were acquired on 13 biopsies of paraffin-embedded human skin carcinomas. Our approach relies on an innovative fuzzy C-means (FCM)-based clustering algorithm, allowing the automatic and simultaneous estimation of the optimal FCM parameters (number of clusters K and fuzziness index m).
View Article and Find Full Text PDFMalignant melanoma (MM) is the most severe tumor affecting the skin and accounts for three quarters of all skin cancer deaths. Raman spectroscopy is a promising nondestructive tool that has been increasingly used for characterization of the molecular features of cancerous tissues. Different multivariate statistical analysis techniques are used in order to extract relevant information that can be considered as functional spectroscopic descriptors of a particular pathology.
View Article and Find Full Text PDFRaman spectra are classically modeled as a linear mixing of spectra of molecular constituents of the analyzed sample. Source separation methods are thus well suited to estimate these constituent spectra. However, physical distortions due to the instrumentation and biological nature of samples add nonlinearities to the Raman spectra model.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
Raman spectroscopy is a useful tool to investigate the molecular composition of biological samples. Source separation methods can be used to efficiently separate dense informations recorded by Raman spectra. Distorting effects such as fluorescence background, peak misalignment or peak width heterogeneity break the linear and instantaneous generative model needed by the source separation methods.
View Article and Find Full Text PDF