Publications by authors named "Valerio di Marco"

Article Synopsis
  • Cadmium is a highly toxic heavy metal that poses serious health risks, and finding effective treatments for cadmium poisoning is still a challenge despite ongoing research.* -
  • This study focuses on creating better chelation therapy options by exploring sulfur-rich macrocycles with different polyamine backbones, revealing that DO4S has the strongest ability to bind and remove cadmium.* -
  • The research shows that DO4S forms the most stable complex with cadmium compared to other chelators, outperforming established agents like EDTA and DTPA, indicating its potential for improved treatments for cadmium intoxication.*
View Article and Find Full Text PDF

Targeted Radionuclide Therapy (TRT) is a medical technique exploiting radionuclides to combat cancer growth and spread. TRT requires a supply of radionuclides that are currently produced by either cyclotrons or nuclear research reactors. In this context, the ISOLPHARM project investigates the production of innovative radionuclides for medical applications.

View Article and Find Full Text PDF

Olanzapine is an antipsychotic drug that has been reported to suppress ferroptosis, a recently discovered form of regulated cell death. In this work, the scavenging activity of olanzapine and some of its metabolites is investigated using state-of-the-art density functional theory calculations (level of theory: (SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)). Indeed, this reactivity is linked to the therapeutic activity of many antipsychotic drugs and ferroptosis inhibitors.

View Article and Find Full Text PDF

The interest in mercury radioisotopes, Hg ( = 23.8 h) and Hg ( = 64.14 h), has recently been reignited by the dual diagnostic and therapeutic nature of their nuclear decays.

View Article and Find Full Text PDF

The clinical success of [Ra]RaCl (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes.

View Article and Find Full Text PDF

A series of macrocyclic ligands were considered for the chelation of Pb: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb and that the most suitable macrocyclic scaffold for Pb is 1,4,7,10-tetrazacyclododecane.

View Article and Find Full Text PDF

Background: Silver-111 is a promising β-emitting radioisotope with ideal characteristics for targeted radionuclide therapy and associated single photon emission tomography imaging. Its decay properties closely resemble the clinically established lutetium-177, making it an attractive candidate for therapeutic applications. In addition, the clinical value of silver-111 is further enhanced by the existence of the positron-emitting counterpart silver-103, thus imparting a truly theranostic potential to this element.

View Article and Find Full Text PDF

Background: The alpha-emitter radium-223 (Ra) is presently used in nuclear medicine for the palliative treatment of bone metastases from castration-resistant prostate cancer. This application arises from its advantageous decay properties and its intrinsic ability to accumulate in regions of high bone turnover when injected as a simple chloride salt. The commercial availability of [Ra]RaCl as a registered drug (Xofigo) is a further additional asset.

View Article and Find Full Text PDF

Silver-111 is an attractive unconventional candidate for targeted cancer therapy as well as for single photon emission computed tomography and can be complemented by silver-103 for positron emission tomography noninvasive diagnostic procedures. However, the shortage of chelating agents capable of forming stable complexes tethered to tumor-seeking vectors has hindered their application so far. In this study, a comparative investigation of a series of sulfur-containing structural homologues, namely, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetraazacyclotetradecane (TE4S) was conducted to appraise the influence of different polyazamacrocyclic backbones on Ag complexation.

View Article and Find Full Text PDF

The biologically triggered reduction of Cu to Cu has been postulated as a possible decomplexation pathway in Cu-based radiopharmaceuticals. In an attempt to hinder this phenomenon, we have previously developed a family of S-containing polyazamacrocycles based on 12-, 13-, or 14-membered tetraaza rings able to stabilize both oxidation states. However, despite the high thermodynamic stability of the resulting Cu complexes, a marked [Cu]Cu release was detected in human serum, likely as a result of the partially saturated coordination sphere around the copper center.

View Article and Find Full Text PDF

Mercury-197 m/g are a promising pair of radioactive isomers for incorporation into a theranostic as they can be used as a diagnostic agent using SPECT imaging and a therapeutic via Meitner-Auger electron emissions. However, the current absence of ligands able to stably coordinate Hg to a tumour-targeting vector precludes their use in vivo. To address this, we report herein a series of sulfur-rich chelators capable of incorporating Hg into a radiopharmaceutical.

View Article and Find Full Text PDF

Ag-perturbed angular correlation of γ-rays (PAC) spectroscopy provides information on the nuclear quadrupole interactions, and thereby on the local structure and dynamics of the silver ion binding site. Brownian rotational motion, i.e.

View Article and Find Full Text PDF

Copper radioisotopes are generally employed for cancer imaging and therapy when firmly coordinated via a chelating agent coupled to a tumor-seeking vector. However, the biologically triggered Cu-Cu redox switching may constrain the in vivo integrity of the resulting complex, leading to demetallation processes. This unsought pathway is expected to be hindered by chelators bearing N, O, and S donors which appropriately complements the borderline-hard and soft nature of Cu and Cu.

View Article and Find Full Text PDF

Current interest in the α-emitting bismuth radionuclides, bismuth-212 (Bi) and bismuth-213 (Bi), stems from their great potential for targeted alpha therapy (TAT), an expanding and promising approach for the treatment of micrometastatic disease and the eradication of single malignant cells. To selectively deliver their emission to the cancer cells, these radiometals must be firmly coordinated by a bifunctional chelator (BFC) attached to a tumour-seeking vector. This review provides a comprehensive overview of the current state-of-the-art chelating agents for bismuth radioisotopes.

View Article and Find Full Text PDF

Metals are an important atmospheric aerosol component; their impacts on health and the environment depend also on their solubility, dissolution kinetics and chemical form in which they are present in the aerosol (, oxidation state, inorganic salt or oxide/hydroxide, organic complex). In this study, we investigated the impact of fog processing on the solubility and dissolution of metals in PM samples collected in an urban background site in Padova (Italy). For each sample, we determined the solubility and dissolution kinetics of 17 elements in a solution simulating fog water in the winter season in the Po Valley (pH 4.

View Article and Find Full Text PDF

The complexes formed between Pb and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were reinvestigated in aqueous solutions using a combination of pH potentiometry, UV-vis spectroscopy, and NMR spectroscopy. The thermodynamic data were supported by kinetics assays. Differently protonated complexes, .

View Article and Find Full Text PDF

The Cu complexes formed by a series of cyclen derivatives bearing sulfur pendant arms, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis[2-(methylsulfanyl)ethyl]-4,10-diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S), were studied in aqueous solution at 25 °C from thermodynamic and structural points of view to evaluate their potential as chelators for copper radioisotopes. UV-vis spectrophotometric out-of-cell titrations under strongly acidic conditions, direct in-cell UV-vis titrations, potentiometric measurements at pH >4, and spectrophotometric Ag-Cu competition experiments were performed to evaluate the stoichiometry and stability constants of the Cu complexes. A highly stable 1:1 metal-to-ligand complex (CuL) was found in solution at all pH values for all chelators, and for DO2A2S, protonated species were also detected under acidic conditions.

View Article and Find Full Text PDF

The coordination properties of four hydroxypyridinecarboxylates, designed for the treatment of iron-overloading conditions as bidentate O,O'-donor ligands, have been studied with Zn in the solid state. The coordination compounds [Zn(A1)(HO)] (1), [Zn(A2)(HO)] (2), [Zn(A3)(HO)]·2HO (3) and [Zn(B1)(HO)]·4HO (4), where the ligands are 1-methyl-4-oxidopyridinium-3-carboxylate (A1, CHNO), 1,6-dimethyl-4-oxidopyridinium-3-carboxylate (A2, CHNO), 1,5-dimethyl-4-oxido-pyridinium-3-carboxylate (A3, CHNO) and 1-methyl-3-oxidopyridinium-4-carboxylate (B1, CHNO), have been synthesized and analysed by single-crystal X-ray diffraction. The ligands were chosen to probe (i) the electronic effects of inverting the positions of the O-atom donor groups (i.

View Article and Find Full Text PDF

The seawater pH measurement is usually quite complicated because that matrix is characterized by a high ionic strength leading to calibration errors if NIST standards are used. For this matrix, different pH scales like the "total hydrogen ion concentration scale" (TOT) and the "seawater scale" (SWS), are defined, and suitable synthetic seawater solutions must be prepared according to standard procedures to calibrate the glass electrode. This work provides a new approach to make seawater pH measurements by using the glass electrode calibrated with the NIST standards (pH) converting the pH into the right TOT or SWS scales by using empirical equations derived from theoretical thermodynamic data: pH=pH+0.

View Article and Find Full Text PDF

In locally advanced rectal cancer patients (LARC), preoperative chemoradiation improves local control and sphincter preservation. The response rate to treatment varies substantially between 20 and 30%, and it is an important prognostic factor. Indeed, nonresponsive patients are subjected to higher rates of local and distant metastases, and worse survival compared to patients with complete response.

View Article and Find Full Text PDF

EDTA and soluble Cr(III) are usually both present in wastewaters coming from treatment plants handling tannery effluents. A well-established method to determine EDTA is based on the conversion of free and complexed EDTA into its Fe(III) complex. This procedure gives inconsistent data when Cr(III)-EDTA is present.

View Article and Find Full Text PDF

Research in the field of radiopharmaceuticals is increasingly promoted by the widespread and growing interest in applying nuclear medicine procedures in both disease diagnosis and treatment. The production of radionuclides of medical interest is however a challenging issue. Along with the conventional techniques other innovative approaches are being investigated and, among those, the ISOLPHARM project is being developed at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro).

View Article and Find Full Text PDF

Silver-111 (Ag, t = 7.47 d) is a β emitter suitable for targeted cancer therapy due to favourable decay properties. The production of no-carrier added Ag via Isotope Separation On-Line (ISOL) technique is being investigated at the Legnaro National Laboratories of the Italian Institute of Nuclear Physics (ISOLPHARM project).

View Article and Find Full Text PDF