The Src-homology 2 domain containing phosphatase 2 (SHP2) plays a critical role in crucial signaling pathways and is involved in oncogenesis and in developmental disorders. Its structure includes two SH2 domains (N-SH2 and C-SH2), and a protein tyrosine phosphatase (PTP) domain. Under basal conditions, SHP2 is auto-inhibited, with the N-SH2 domain blocking the PTP active site.
View Article and Find Full Text PDFWe developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein.
View Article and Find Full Text PDFHere we report the design of membrane-active peptidomimetic molecules with a tunable arrangement of hydrophobic and polar groups. In spite of having the same chemical composition, the effective hydrophobicities of the compounds were different as a consequence of their chemical structure and conformational properties. The compound with lower effective hydrophobicity demonstrated antibacterial activity that was highly selective towards bacteria over mammalian cells.
View Article and Find Full Text PDF